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Agricultura Sostenible de Cérdoba (IAS-CSIC), como directores de la Tesis Doctoral
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HIERBAS MEDIANTE VEHICULOS AEREOS NO TRIPULADOS PARA UN USO
SOSTENIBLE DE FITOSANITARIOS” realizada por Jorge Torres Sanchez,

INFORMAN QUE:

Dicha Tesis Doctoral ha sido realizada bajo nuestra direccion.

Ha tenido como principal objetivo el desarrollo de metodologias robustas para
la cartografia de malas hierbas en cultivos herbaceos en fase temprana y la
monitorizacion tridimensional de cultivos lefiosos, con el fin Gltimo de contribuir
a la implementacion de estrategias de técnicas de aplicacion variable en el
ambito de la agricultura de precisidon que permitan un uso sostenible de los
productos fitosanitarios.

Tanto la metodologia como el trabajo de investigacién, las conclusiones y los
resultados obtenidos son satisfactorios.

En el desarrollo de su etapa predoctoral, Jorge Torres Sanchez ha colaborado
en numerosas lineas de trabajo que se han desarrollado expresamente en su
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Agronomy for Sustainable Development.
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multispectral UAV images as affected by mission planning for precision
agriculture proposes. En prensa, International Journal of Remote Sensing.
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19708.

6. * Lépez-Granados, F., Torres-Sanchez, J., Serrano-Pérez, A., Castro, A. I. de,
Mesas-Carrascosa, F.-J., & Pefia, J.-M. (2016). Early season weed mapping in
sunflower using UAV technology: variability of herbicide treatment maps against
weed thresholds. Precision Agriculture, 17, 183-199.

7. Pérez-Ortiz, M., Pena, J. M., Gutiérrez, P. A., Torres-Sanchez, J., Hervas-
Martinez, C., & Lépez-Granados, F. (2015). A semi-supervised system for weed
mapping in sunflower crops using unmanned aerial vehicles and a crop row
detection method. Applied Soft Computing, 37, 533—-544.

8. * Torres-Sanchez, J., Lopez-Granados, F., Serrano, N., Arquero, O., & Pena,
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with  Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE, 10(6),
e0130479.
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object-based method for optimal thresholding in UAV images: Application for
vegetation detection in herbaceous crops. Computers and Electronics in
Agriculture, 114, 43-52.
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Resolution. Sensors, 15, 5609-5626.
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113.
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F. (2013). Weed mapping in early-season maize fields using object-based
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olive-tree models generated with UAV technology. 8th Olive International
Symposium. Publicacion on-line. Split, Croacia.

Gomez-Candén, D., Torres-Sanchez, J., Labbe, S., Jolivot, A., Martinez, S.,
Regnard, J.L. (2015) Water stress assessment at tree scale: high-resolution
thermal UAV imagery acquisition and processing. VIl International Symposium
on lIrrigation of Horticultural Crops. Publicacion on-line. Lleida, Spain

* Torres-Sanchez, J., Lopez-Granados, F., Pefa, J.M. (2015) Mapping olive-
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Vehicle (UAV). 10th European Congress of Precision Agriculture. Pp: 321-329.
Tel Aviv, Israel.

* Torres-Sanchez, J., Lopez-Granados, F., Serrano, N., Arquero, O., Pefa,
J.M. (2014). Characterizing olive tree geometric features using unmanned aerial
vehicle (UAV) images. Olivebioteq 2014. Publicacion on-line. Amman, Jordania.

* Torres-Sanchez, J., Pefa, J. M., de Castro, A.l., Serrano-Pérez, A., Lopez-
Granados, F. (2014). Weed seedlings detection in winter cereals for site-
specific control: use of UAV imagery to overcome the challenge. 712th
International Conference on Precision Agriculture. Publicacién on-line.
Sacramento, USA.

Pefa, J. M., Torres-Sanchez, J., de Castro, A.l., Lépez-Granados, F. (2014).
The TOAS project: UAV technology for optimizing herbicide applications in
weed-crop systems. 12th International Conference on Precision Agriculture.
Publicacion on-line. Sacramento, USA.

* Pefa, J. M., Torres-Sanchez, J., de Castro, A.l., Serrano-Pérez, A., Lopez-
Granados, F. (2014). Comparing visible and color-infrared UAV imagery for
early-season weed mapping: the case of maize as a wide row crop. 2nd
International Conference on Robotics and associated High-technologies and
Equipment for Agriculture and Forestry. Pp: 319-328. Madrid, Spain.

* Torres-Sanchez, J., Pefa, J.M., de Castro, A.l., Lépez-Granados, F.. 2014.
Multitemporal weed mapping using UAV imagery for early site-specific control:



the case of wheat as a narrow row crop. 2nd International Conference on
Robotics and associated High-technologies and Equipment for Agriculture and
Forestry. Pp: 269-278. Madrid, Spain.

Mesas-Carrascosa, F.J., Torres-Sanchez, J., Pefa, J.M., Garcia-Ferrer, A.,
Castillejo-Gonzalez, I.L., Lopez-Granados, F. 2014. Generating UAV accurate
ortho-mosaicked images using a six-band multispectral camera arrangement.
2nd International Conference on Robotics and associated High-technologies
and Equipment for Agriculture and Forestry. Pp: 299-308. Madrid, Spain.

10.* Torres-Sanchez, J., Pena-Barragan, J. M., de Castro, A. I., Lépez-Granados,

11.

F. (2013) Imagery from unmanned aerial vehicles (UAV) for early site specific
weed management (ESSWM). 9th European Congress of Precision Agriculture.
Pp: 193-199. Lleida, Spain.

Labbé, S., Gbébmez-Candén, D., El-Natour, G., Dorado, J., Fernandez-
Quintanilla, C., Lépez-Granados, F., Pena-Barragan, J. M., de-Castro, A. |.,
Torres-Sanchez, J., Rabatel, G. (2012) Automatic mosaicking of very high
spatial resolution UAV multispectral images for precision agriculture: Test of
MICMAC freeware. First International Conference on Robotics and associated
High-technologies and Equipment for Agriculture (RHEA-2012). Pp: 269-274.
Pisa, Italy.

Aportaciones en Congresos Nacionales:

1.

* Torres-Sanchez J., Pefia J.M., Serrano-Pérez A., Lépez-Granados F. (2015).
Deteccién automatica de vegetacion en estado de plantula en imagenes
procedentes de un vehiculo aéreo no tripulado (UAV): aplicacién para la
discriminacion de malas hierbas. XV Congreso de la Sociedad Espafiola de
Malherbologia. Pp: 249-255. Sevilla, Espanfa.

Borra |., Pena J.M., Torres-Sanchez J., Lépez-Granados F. (2015). Evaluacion
de la técnica de resampling en imagenes UAV para la discriminacién de malas
hierbas mediante analisis OBIA. XV Congreso de la Sociedad Espariola de
Malherbologia. Pp: 209-216. Sevilla, Espafa.

Caballero-Novella J.J., Pefa J.M., Torres-Sanchez J., Lopez-Granados F.
Optimizacién de algoritmos de segmentacion por valor umbral aplicado a
deteccién de malas hierbas en imagenes procedentes de vehiculos aéreos no
tripulados. XV Congreso de la Sociedad Espariola de Malherbologia. Pp: 217-
222. Sevilla, Espana.

Pérez-Ortiz M., Pena J.M., Gutiérrez P.A., Torres-Sanchez J., Hervas-
Martinez C., Lépez-Granados F. A weed monitoring system using UAV-imagery
and the Hough transform. XV Congreso de la Sociedad Espariola de
Malherbologia. Pp: 233-239. Sevilla, Espana.

* Torres-Sanchez, J., Pena-Barragan, J.M., de Castro-Megias, A.l., Lopez-
Granados, F. (2013). Seguimiento multitemporal de trigo para la deteccion de
malas hierbas en imagenes tomadas desde un vehiculo aéreo no tripulado
(UAV). XV Congreso de la Asociacion Espafiola de Teledeteccion. Pp: 43-48.
Alcala de Henares, Spain.

* Torres-Sanchez, J., Pena-Barragan, J.M., de Castro-Megias, A.l., Lépez-
Granados, F. (2013). Puesta a punto de un vehiculo aéreo no tripulado (UAV)
para deteccién de malas hierbas en fase temprana: resolucion espacial y altura
de vuelo. XIV Congreso de la Sociedad Espariola de Malherbologia. Pp: 43-47.
Valencia, Spain.



7.

* Pena-Barragan, J.M., de Castro-Megias, A.l., Torres-Sanchez, J., Lopez-
Granados, F. (2013). Imagenes multiespectrales procedentes de un vehiculo
aéreo no tripulado (UAV): Una innovacion tecnoldgica para la deteccién de
malas hierbas en fase temprana. X1V Congreso de la Sociedad Espariola de
Malherbologia. Pp: 49-53. Valencia, Spain.

Premios recibidos en Congresos Internacionales:

1.

Premio 2015 “Best paper” a la mejor comunicacién del 10" European
Conference on Precision Agriculture por el trabajo "Mapping olive-tree
geometric features from 3-D models generated with an Unmanned Aerial
Vehicle (UAV)". (Autores: J. Torres-Sanchez, F. Lopez-Granados y J.M. Pena-
Barragan). 10" European Conference on Precision Agriculture (ECPA) (12-16
Julio, 2015. Tel Aviv, Israel).

Premio 2014 que bianualmente otorga la INTERNATIONAL SOCIETY OF
PRECISION AGRICULTURE. EI premio 2014 se concedi6 en el 12th
Conference on Precision Agriculture a J. Torres-Sanchez como “Outstanding
Graduate Student Award” por la comunicacion: Weed seedlings detection in
winter cereals for site-specific control: use of UAV imagery to overcome the
challenge (Autores: J. Torres-Sanchez, J.M. Pefa, A.l. de Castro and F. Lopez-
Granados). 12th International Conference on Precison Agriculture, CD ROM,
20-23 July 2014, Sacramento (EEUU).

Premio 2013 “2nd Best Oral Communication Award” concedido en 9th
International Congress on Precision Agriculture por la comunicacién: Imagery
from unmanned aerial vehicles (UAV) for early site specific weed management
(ESSWM). (Autores: J. Torres-Sanchez, J.M. Pefna-Barragan, D. Gomez-
Candédn, A. I. De Castro, F. Lépez-Granados). 9th European Conference on
Precision Agriculture (ECPA) pp 193-199, Lleida, Fecha: 7-11 July, 2013.

Estancias internacionales

1.

2.

Departamento Z-GIS de Geoinformatica de la University of Salzburg (Austria).
Bajo la supervision del Dr. Stefan Lang. En el periodo del 01/08/2016 al
31/10/2016. Perfeccionamiento de técnicas de analisis de imagen.

Maison de la Télédétection dependiente de IRSTEA, Montpellier (Francia).
Bajo la supervision del Dr. Sylvain Labbé. En el periodo del 01/06/14 al
15/08/14. Manejo de sensores térmicos embarcados en UAVs.

Consideramos que el trabajo realizado cumple los requisitos necesarios para
su presentacion y lectura.

Por todo ello, se autoriza la presentacién de la tesis doctoral.

Coérdoba, de Noviembre de 2016

Firma del/de los director/es

Fdo.: Fdo.:
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Introduccion

1. INTERES ECONOMICO Y AGRO-AMBIENTAL DEL USO SOSTENIBLE DE

FITOSANITARIOS EN EL MARCO EUROPEO Y ESPANOL

La agricultura europea se caracteriza, de una forma general, por una alta productividad ligada
a una elevada mecanizacién y al empleo de productos agroquimicos aplicados de forma uniforme en
las parcelas (Figura 1). Estas practicas presentan un coste agro-econémico notable y una relevante
huella de carbono, producida tanto por las emisiones directas de la maquinaria agricola, como por las
indirectas derivadas de la produccidn de insumos agricolas (fertilizantes, fitosanitarios, semillas,
entre otros) (Schieffer y Dillon 2014). En concreto, la actual produccidn agraria requiere el consumo
de fitosanitarios (principalmente herbicidas, fungicidas e insecticidas) como herramienta esencial
para mantener las necesidades de calidad y cantidad de alimentos que demanda la poblacién. Los
gastos en herbicidas ascendieron en 2015 en Espafia a 312 M € mientras que los referidos al resto de

fitosanitarios llegaron a los 547 M € (AEPLA 2016).

a)

Figura 1. Tratamiento herbicida en cereal (a) y fungicida en vifiedo (b) realizado de forma uniforme sin tener en
cuenta la distribucion espacial de las malas hierbas ni del hongo que se deben controlar ni la arquitectura de las
cepas en el caso de la vifia.

Este elevado coste de las aplicaciones propiamente dichas junto con el de los fitosanitarios, asi
como sus potenciales efectos medioambientales, han originado una gran preocupaciéon en distintos
ambitos administrativos cuya consecuencia ha sido la creacién de Normativas Europeas como el
REGLAMENTO (CE) 1107/2009 para la comercializaciéon de Productos Fitosanitarios y la DIRECTIVA
2009/128/CE para el Uso Sostenible de Fitosanitarios. Dentro de esta Directiva se destacan como
elementos clave “el fomento del bajo consumo (reduccion de las aplicaciones) y la utilizacion de
dosis adecuadas en funcién de las infestaciones de malas hierbas, insectos-plaga y enfermedades”.
Esta Directiva ha sido traspuesta a cada pais miembro de la Unién y en Espafia se publico el Real
Decreto 1311/2012 (BOE n? 223, 15/09/2012: 65127-65171) en el que se define el Marco de
Actuacion para un Uso Sostenible de los Productos Fitosanitarios. Concretamente se establece que

“las poblaciones de los insectos-plaga, enfermedades y malas hierbas deben ser objeto de
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seguimiento mediante métodos e instrumentos adecuados” y como objetivo se menciona el
“desarrollo de herramientas de gestidn... y sistemas de apoyo a las decisiones basados en SIG y
teledeteccion”. Estos ultimos componentes estdn incluidos en el fundamento agrondmico de dos
técnicas integradas en la Agricultura de Precisidon y que son de gran importancia para alcanzar las

metas propuestas en la legislacién anteriormente comentada:

1. En el ambito de los cultivos herbaceos, la tecnologia basada en tratamientos localizados de
herbicidas (en inglés SSWM: Site-Specific Weed Management) segun la distribuciéon de las
malas hierbas. Esta forma de acometer el control de malas hierbas se basa en que éstas se
suelen distribuir en rodales dentro de los cultivos, tal como prueban numerosos trabajos
cientificos, lo que permite cartografiar zonas de infestacién y de no infestacidon de forma que
los tratamientos puedan definirse segln la densidad de malas hierbas y composicion de
grupos (por ejemplo, monocots vs dicots; malas hierbas resistentes o de dificil control; Heijting
et al. 2007; Jurado-Expdsito et al. 2004, 2009).

2. En el dmbito de los cultivos lefiosos, la tecnologia de aplicacion de fitosanitarios (en inglés VA:
Variable Application) se puede realizar en funcidén de su volumen y arquitectura considerando
si un arbol o conjunto de arboles (o cepas en el caso de vifiedo) estan o no afectados por
determinado problema que necesite la aplicacién dirigida a su parte aérea en esa zona del
campo. La utilizacidon del volumen de copa de estos cultivos como base para el calculo y
optimizacion de las aplicaciones de estos fitosanitarios fue discutido y evaluado por Sutton y
Unrath (1984). Estas aplicaciones necesitan ser precisas y estar adaptadas a la arquitectura y
volumen del cultivo, de lo contrario el agricultor utiliza producto por elevacién, aplicandolo de
forma inadecuada y provocando un exceso de tratamiento (Figura 1) que puede llevar a gastos
agro-econémicos innecesarios y a potenciales riesgos medioambientales de diversa indole

(Miranda-Fuentes et al. 2016).

Ademas de la legislacion comentada anteriormente se han creado los cauces para generar el
conocimiento cientifico y los desarrollos tecnolégicos de forma que la estrategia agronémica que
subyace en la aplicacidn sostenible de fitosanitarios se contemplé como objetivo en el 72 Programa
Marco Europeo, concretamente en los Programas 7FP-NMP-2009 (Nanosciences, Nanotechnologies,
Materials and New Production Technologies) y 7FP-KBBE-2008 (Food, Agriculture and Fisheries, and
Biotechnology). Actualmente y dentro del vigente Programa H2020 también se incorpord este
objetivo en el Reto Social "Food security, sustainable agriculture and forestry, marine and maritime
and inland water research and the bioeconomy", en el que se incluyen dos acciones: (a) Accidn "SFS3-
2014: Practical solutions for pests and invasive alien species affecting plants" en la que se persigue

avanzar en el desarrollo de soluciones fiables para la gestidon de insectos-plaga, enfermedades y
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malas hierbas utilizando las ultimas tecnologias y mediante enfoques biolégicos e integrados; y (b)
Accion "SFS2-2014/2015: Sustainable crop production" en la que se pretende alcanzar una mejora en
la sostenibilidad de diferentes sistemas intensivos de produccién de cultivos, disminuyendo el
impacto negativo sobre el medio ambiente, empleando nuevas tecnologias (sistemas automatizados,
aplicaciones localizadas, teledeteccion, sensores terrestres, TICs). Esta acciéon se centra en la
racionalizacidn de las necesidades de nutrientes y de fitosanitarios mediante la minimizacién del uso
de fertilizantes, herbicidas y otros fitosanitarios. Ello se debe lograr definiendo nuevas estrategias
de manejo de los cultivos que reduzcan su uso y, al mismo tiempo, garanticen un nivel adecuado de
fertilizacion y control asi como unos rendimientos econdmicos y medioambientales satisfactorios. Es
decir, es necesario compatibilizar productividad con sostenibilidad lo cual es sin duda un reto
fundamental en los actuales sistemas agricolas. En esta Tesis Doctoral se proponen una serie de
desarrollos cuya finalidad es aportar conocimiento y tecnologias para avanzar en la consecucién de

este desafio.

A continuacidn se recogen los principales conceptos que se desarrollan en la presente Tesis
Doctoral para la elaboracion de mapas de prescripcién de tratamientos herbicidas, y para la
caracterizaciéon tridimensional de cultivos lefiosos. Se presenta asimismo la bibliografia mas

relevante sobre dichas tematicas y las tecnologias relacionadas con éstas.

2. AGRICULTURA DE PRECISION

Como se ha mencionado anteriormente, uno de los métodos posibles que permiten aumentar
la sostenibilidad de las explotaciones agricolas es el abandono de las practicas mas comunes en la
agricultura convencional consistentes en la aplicacién de manera uniforme en todo el campo de las
labores y los insumos (dosis de siembra, fertilizantes, herbicidas, insecticidas, fungicidas, riego, entre
otros). Es necesario tener en cuenta que un sistema agricola se compone de elementos muy diversos
y que en una parcela existen variaciones que se pueden agrupar en tres tipos (Hatfield 2000): 1)
natural, como el suelo y la topografia; 2) aleatoria, como las precipitaciones; y 3) manejada, como la
aplicacion de agroquimicos. La interaccion entre estas fuentes de heterogeneidad provoca la
variacion que se observa en los cultivos. Considerando dicha variabilidad, surgié a finales del siglo XX
la Agricultura de Precision, consistente en la aplicacion de técnicas geoespaciales para el manejo del
cultivo de manera que se incremente la eficiencia mediante la aplicacién de insumos sélo dénde y
cuando sean necesarios y en la cantidad requerida (Robert 2002). Esta forma de afrontar la
produccién agricola hace que la agricultura de precision ofrezca grandes ventajas en lo referente a
sostenibilidad, calidad de las cosechas, proteccién medioambiental, seguridad alimentaria, desarrollo

econdmico rural, calidad de vida en las zonas rurales, rentabilidad y productividad (Liaghat 2010). Los
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protocolos para la implementacién de la agricultura de precision pueden ser resumidos en tres
pasos generales (Liaghat 2010): 1) recopilacion de informacion sobre la variabilidad; 2) procesado y
analisis de la informacién para comprenderla; y 3) implementacion de cambios en el manejo de los

insumos.

En el caso de SSWM, los ultimos afios se ha avanzado en las etapas 2 y 3 (toma de decisiones y
aplicacion localizada de herbicidas), de tal forma que hay maquinaria agronémica disponible para
realizar con éxito ambas fases. Sin embargo, el paso 1) es decir, la monitorizacion de las malas
hierbas en los cultivos es ain uno de los componentes criticos para la adopcion de SSWM y esta
identificado a nivel empresarial y cientifico como el principal cuello de botella de esta tecnologia. La
razon fundamental es que los tratamientos se realizan habitualmente en post-emergencia, en
estados fenoldgicos tempranos del cultivo y malas hierbas, en base a las infestaciones presentes que
son muy diversas y que varian seguln cultivos y épocas del afio. Dada la complejidad de estos
tratamientos, la estimaciéon o monitorizacion de las infestaciones de malas hierbas en estado de
plantula es una cuestién a resolver y un requisito crucial para el desarrollo de SSWM. Segun la
revision de Lépez Granados (2011), diversos autores manifiestan que la monitorizacién de las
infestaciones de malas hierbas se puede realizar mediante técnicas de deteccién remota o préxima
basandose en que: 1) existen (y son cuantificables) diferencias espectrales entre las malas hierbas y
el cultivo; 2) la resolucidn espacial (tamafio del pixel) de las imagenes es la adecuada para su
discriminacién; y 3) hay disponibilidad del tipo de imagenes con las resoluciones espacial y espectral
gue se requieren. A pesar de los numerosos trabajos resefiados en dicha revisidn siguen sin solucién
las diferentes dificultades inherentes a la deteccidn temprana de malas hierbas y se concluye que
muchos estudios presentan resultados en condiciones muy limitadas (ej.: una mala hierba en un
cultivo concreto; condiciones de iluminacién muy especificas al momento de la toma de imagenes
terrestres, entre otros) lo que reduce el interés comercial ya que cualquier herramienta que se
desarrolle tendria un mercado muy restringido. En el apartado 7 de esta Introduccion se detallaran

las investigaciones que recientemente se han publicado sobre cartografia de malas hierbas.

En el desarrollo de técnicas VA para cultivos leiiosos, se han realizado contribuciones
cientificas relevantes en lo referente a los tres pasos generales para la implementacién de la
agricultura de precision: tanto en la recopilacién de informacion sobre la variabilidad del cultivo
(Rosell y Sanz 2012), como en la toma de decisiones en funcidn de ésta y en la aplicacidon de
tratamientos en base a estas decisiones (Doruchowski et al. 2009). De hecho, hay numerosas
investigaciones que se basan en la deteccién on-ground o préxima, ya sea mediante sensores
ultrasoénicos (Hu y Fu 2012; Zaman y Schumann 2005) o LiDAR (Arné et al. 2012; Escola et al. 2016;

Méndez et al. 2013; Rosell et al. 2009). Sin embargo, hasta el momento existe escasa bibliografia
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(Burgos et al. 2015; Zarco-Tejada et al. 2014) sobre la adquisicién de informacion para determinar la
variabilidad morfoldgica del cultivo desde plataformas aéreas y las ventajas que esta podria aportar.
Esta carencia estd ligada al hecho de que hasta hace unos pocos afos las plataformas aéreas
disponibles no cumplian con los requisitos necesarios en cuanto a resolucién espacial para estas
tareas. En el apartado 8 de esta Introduccién se detallaran las investigaciones que recientemente se

han publicado sobre monitorizacién 3D de cultivos lefiosos.

La presente Tesis Doctoral se ocupa del primero de los pasos en la agricultura de precision, la
adquisicidon de informacion georreferenciada, centrdndose en el uso de Teledeteccion como uno de
los métodos que mads se han extendido para ello. Asimismo, se presentardn los trabajos realizados

para abordar el segundo paso y la toma de decisiones para el control localizado de malas hierbas.

3. TELEDETECCION EN AGRICULTURA

La teledeteccion es la ciencia que se ocupa de obtener e interpretar informacién desde la
distancia mediante sensores que no estan en contacto con el objeto de observacion (Jensen 2006).
Esta forma de recolectar informacion tiene ventajas Unicas (Jensen 2006) que son de gran

importancia en la agricultura y entre las que cabe destacar:
- Es un método no destructivo.

- Los datos pueden ser obtenidos sistematicamente sobre grandes areas en vez de mediante

muestreos de puntos singulares.
- La adquisicidon de datos sistematica puede eliminar el sesgo de los muestreos.
- Permite generar informacién de lugares que no son accesibles.

Por lo anterior, la teledeteccidon es una herramienta ampliamente utilizada en la agricultura y
la agronomia con diferentes propdsitos (Atzberger 2013). Segun Becker-Reshef et al. (2010), la
investigacion y el desarrollo de la monitorizacién de la agricultura con imagenes de satélite empezé a
comienzos de los 70 del siglo pasado debido a que una drastica carestia de trigo en Rusia atrajo la
atencién sobre la importancia de tener estimaciones sobre la producciéon agricola de manera exactay
a tiempo. Como resultado, en 1974 el USDA junto a la NASA y NOAA iniciaron un experimento para
mejorar los métodos de prediccidn de cosecha. Desde ese momento, la teledeteccién ha sido
frecuentemente utilizada en estudios agricolas. Por citar algunos de ellos, se ha cartografiado una
gran variedad de factores (Lee et al. 2010) incluyendo el estado del cultivo (Houborg et al. 2009), las
propiedades del suelo (Lépez-Granados et al. 2005), el contenido de agua (Meron et al. 2010), la
distribucién de malas hierbas (de Castro et al. 2013), la deteccidon de enfermedades (de Castro et al.

2015), entre otros. Los aviones tripulados y los satélites han sido las principales plataformas remotas
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utilizadas para obtener imagenes y facilitar la toma de datos a escala local o global. Sin embargo, los
continuos avances y mejoras en plataformas no tripuladas junto al desarrollo de sensores
susceptibles de ser embarcados en ellas, han proporcionado grandes oportunidades para su

aplicacion en teledeteccion.

4. VEHICULOS AEREOS NO TRIPULADOS: CARACTERISTICAS DE LAS

IMAGENES

Tradicionalmente, la teledetecciéon ha sido asociada con satélites o aviones tripulados con
sensores a bordo. Sin embargo, estas plataformas presentan carencias para el desarrollo de muchos
aspectos de la agricultura de precisién debido a sus limitaciones para proporcionar imagenes de
adecuadas resoluciones espacial y temporal, y a que se ven fuertemente afectadas por las
condiciones meteorolédgicas en el momento de la toma de imdagenes (Herwitz et al. 2004). Los
drones, UAV o RPAS (por las siglas en inglés de Unmanned Aerial Vehicle o Remotely Piloted Aerial
Systems) son plataformas aéreas cuya principal caracteristica es la ausencia de piloto, aparte de esto,
pueden ser remotamente controladas, autdnomas, semi-autbnomas o presentar una combinacion de
estas caracteristicas (Eisenbeiss 2009). Como todos los desarrollos en teledeteccién, los UAVs
tuvieron sus inicios en el ambito militar, pero los avances en electrénica y miniaturizacion junto a la
bajada de sus precios, han hecho posible que se extienda su uso a aplicaciones civiles. Los UAVs

ofrecen las siguientes ventajas como plataformas para la teledeteccion:

e Versatilidad y flexibilidad. Los recientes progresos en electrdnica, customizacién vy
miniaturizacion han hecho posible que haya un gran abanico de sensores disponibles para ser
embarcados en un UAV (Tabla 1). Estos sensores tienen la ventaja de que pueden ser
intercambiados o instalados simultdneamente con facilidad en la mayoria de las ocasiones.
Esto contrasta con los satélites, en los que no es posible cambiar de sensor, y con los aviones
tripulados, en los que el mayor coste de los sensores embarcados hace que no todas las
empresas de toma de imagenes puedan ofrecer un amplio rango de sensores.

e Costes mas asumibles que las plataformas tradicionales (Hardin y Jensen 2011), con lo que se
puede obtener informacidon multitemporal dentro de una temporada de cultivo, pudiéndose
asi realizar un seguimiento y evaluacion exhaustivos del mismo que permitan la adopcién de
medidas en el momento preciso.

e Pueden operar rapidamente sin necesidad de planificacion previa, esto es de gran
importancia ya que en agricultura la ventana temporal de actuacién es en ocasiones muy
estrecha ya que puede ser necesario adquirir informacién y evaluarla para tomar medidas en

un breve margen de tiempo. Esto no es posible con los satélites debido a que sus periodos de
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revisita sobre areas concretas estdn establecidos de antemano y no pueden ser cambiados.
Ademas, los satélites con mayor frecuencia de revisita suelen ser aquellos que tienen menor
resolucidon espacial. En el caso de los vuelos tripulados, las imdgenes son normalmente
obtenidas por un nimero limitado de empresas que poseen los aviones y sensores, por lo
tanto es necesario concertar la toma de datos con una gran antelacién. Ello contrasta con los
condicionantes propios de la agricultura ya que no siempre es posible conocer con precisién

el momento en que se deberdn tomar los datos.

Tabla 1. Sensores a borde de UAVs en la bibliografia. Adaptado de (Pajares 2015)

Auxiliares Especificos
GPS Céamaras de video (espectro visible) Cémaras térmicas
IMU Cémaras fotograficas (espectro visible) Colectores electrostaticos
Giroscopios Cdmaras multiespectrales Higrometros
Estabilizadores Camaras hiperespectrales Termdémetros
Altimetros LIDAR Barémetros
Acelerémetros Radar/SAR Sonar
Radidémetros Contadores de particulas
Nariz electrénica Sensores magnéticos
Detectores de gases Detectores de humo

e Pueden volar bajo las nubes, facilitando la generacion de informacidn mediante la
teledeteccion en zonas con gran cobertura nubosa a lo largo del todo el afio, en las que esta
incidencia meteoroldgica impedia o dificultaba la toma de imagenes por parte de satélites y
aviones tripulados.

e Pueden volar a bajas alturas y velocidades, lo que permite adquirir datos de alta resolucién
espacial y ver pequefias plantas y rodales asi como detalles del follaje de los cultivos lefiosos,
lo que no habia sido posible con anterioridad (Xiang y Tian 2011).

Debido a la baja altura de vuelo que permite conseguir resoluciones espaciales muy altas, las
imagenes procedentes de los UAVs abarcan normalmente una superficie reducida y menor que la
superficie que suelen tener las parcelas. Por tanto, al igual que en los vuelos fotogramétricos
tradicionales, suele ser necesario realizar rutas de vuelo con diferentes pasadas sobre el cultivo
objeto de estudio, a fin de tomar una secuencia o coleccion de imagenes que deben poseer
solapamiento transversal y longitudinal y que deben ser combinadas para obtener una tnica imagen
del campo. Para unir todas las imagenes y obtener lo que se conoce como la ortofoto completa de la
parcela, hay que realizar un proceso de ortorrectificacion y posterior “mosaicado” (mosaicking en
inglés). Uno de los aspectos clave durante el disefio del plan de vuelo para conseguir un mosaicado
correcto es determinar el porcentaje de solapamiento que requiere cada objetivo agronédmico. A fin
de que la ortofoto sea de utilidad para los propdsitos para los que se ha generado, es necesario

asegurar que tendra la métrica y la precision necesarias para que los errores de georreferenciacion
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estén minimizados al maximo y no afecten a las técnicas analisis de imagen que le serdn aplicadas

(Laliberte et al. 2010).

5. VEHICULOS AEREOS NO TRIPULADOS: APLICACIONES EN AGRICULTURA

Las ventajas comentadas previamente han hecho que el nimero de usos civiles de los UAVs no
pare de crecer y parezca casi ilimitado. Una gran cantidad de estas aplicaciones puede observarse en
diversas revisiones bibliograficas que sobre los UAVs se han publicado recientemente: Colomina y
Molina (2014); Pajares (2015); Shahbazi et al. (2014); Whitehead et al. (2014). Sin embargo, en esta

Tesis Doctoral nos vamos a centrar en sus aplicaciones a la agricultura.

Como se ha indicado en parrafos anteriores, el UAV puede ser programado a voluntad del
usuario, puede volar con gran flexibilidad y tomar imdagenes de cultivos en momentos criticos del
periodo de crecimiento, mejorando por tanto los procesos de toma de decisiones de los agricultores
(Lelong et al. 2008). Los ultimos afios, los UAVs han sido utilizados para un gran abanico de
aplicaciones en agricultura, del que pueden servir como muestra los siguientes ejemplos: medicién
de parcelas de cultivo ( Mesas-Carrascosa et al. 2014), generacién de mosaicos multiespectrales para
agricultura de precisién (Mesas-Carrascosa et al. 2015), estudio del estado hidrico de vifiedos (Baluja
et al. 2012); caracterizacién de la cubierta de vifia (Ballesteros et al. 2015; Mathews y Jensen 2013);
estudio de la variabilidad espacial y composicién de la uva (Rey-Caramés et al. 2015); estimacion de
biomasa y contenido de nitrégeno en cultivos (Geipel et al. 2016); deteccion de enfermedades
(Calderdn et al. 2013; Garcia-Ruiz et al. 2013); monitorizacion del crecimiento de cultivos herbdaceos

(Bendig et al. 2013); calculo del indice de area foliar (Mathews y Jensen 2013).

En definitiva, la bibliografia consultada concluye que los sistemas UAVs proporcionan
resultados prometedores para la agricultura de precisién e identifican varios aspectos clave para la
eleccién del equipo: méxima carga de pago, fiabilidad y estabilidad de la plataforma, capacidad del
sensor, autonomia de vuelo y su maniobrabilidad, entre otras (Hardin y Hardin 2010; Hardin y Jensen
2011; Laliberte et al. 2010), asi como para programar la mision (altitud de vuelo, porcentaje de

solapamiento) para acometer cada uno de los objetivos agrondmicos que se planteen.

6. ANALISIS DE IMAGEN ORIENTADO A OBJETOS

Como se puede ver en la figura 2, con el incremento en la resolucidn espacial de las imagenes
alcanzado en los ultimos afios, se ha evolucionado de situaciones en las que las entidades a detectar
y los pixeles de la imagen eran de tamanos parecidos (Figura 2a) a imagenes en que cada una de
estas entidades estd compuesta por multitud de pixeles (Figura 2b). Por tanto, en imagenes de muy

alta_resolucion espacial como las obtenidas por sensores a bordo de UAVs para aplicaciones
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agricolas, uno de los problemas inherentes del andlisis de las imagenes es que los pixeles ya no
representan las caracteristicas de los objetivos de la clasificacién (Yu et al. 2006). Es decir, estas
imagenes presentan una mayor variabilidad intra-clase (Aplin 2006; Woodcock y Strahler 1987) v,
consecuentemente, una reduccién en la separabilidad estadistica entre clases si se usan métodos de
clasificacidn tradicionales basados tan sélo en los valores espectrales de los pixeles. Ello puede llevar
a una reduccion en la precision de clasificacién en comparacién a la obtenida en imagenes de menor
resolucién (Yu et al. 2006). Por tanto, la simple aplicacion de las metodologias basadas en pixeles
utilizadas tradicionalmente en el analisis de las imagenes de satélite o de aviones tripulados puede
no ser la forma mas satisfactoria de desarrollar las aplicaciones de UAVs para la agricultura (Hunt et

al. 2013).

a)

-4

Figura 2. Ejemplo sobre una imagen de olivar de la relacion entre objetos y resolucion espacial de las imdgenes

en teledeteccion: a) pixel de 2 m, b) pixel de 5 cm. Adaptado de (Blaschke 2010).

Para solucionar esta variabilidad espectral intra-clase, un nuevo paradigma ha surgido en los
ultimos afios, el andlisis de imagen orientado a objetos (OBIA por las siglas en inglés de Object-
Based Image Analysis), cuyo uso se ha venido extendiendo entre la comunidad de investigadores
dedicados a la teledeteccién desde el afio 2000 (Blaschke 2010). Los objetos son agrupaciones de
pixeles adyacentes y fueron definidos por Hay et al. (2001) como entidades basicas de las imagenes,
donde cada grupo de pixeles estd compuesto de valores digitales similares que poseen de manera
intrinseca una forma, tamanio, y relacién con los demds componentes de la escena que modela. Por
tanto, los objetos son mds homogéneos espectralmente en su interior que con respecto a sus
vecinos. De esta manera se ha progresado del analisis de la imagen utilizando el pixel, en el que la
Unica informacidn disponible para la clasificacién era el valor espectral de cada pixel (o también la
textura en caso de que se aplicaran andlisis por kernels o ventanas), al analisis por objetos en el que
cada uno de ellos tiene informacion espectral mas amplia (ya que se le afiaden valores medios,

desviaciones tipicas, ratios entre medias, entre otros estadisticos) y ademas informacién espacial,
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contextual y jerarquica. Tal y como se puede ver en la figura 3, la informacién contextual hace
referencia a las relaciones que existen entre un objeto y sus vecinos, y la informacion jerarquica se
refiere al hecho de que se pueden establecer distintos niveles de objetos en los que estos se van
agrupando de manera que en niveles superiores se pueden establecer comparaciones entre los
objetos de un grupo con los de otro (Figura 3). Por tanto, el primer paso de los procedimientos OBIA

es la segmentacion en objetos de la imagen.

Sin embargo, la segmentacion no es un fin en si misma de tal forma que existen otros pasos
importantes en el analisis OBIA que se pueden dividir en las siguientes fases: 1) segmentar una
imagen automaticamente en objetos; 2) combinar su informacidn espectral, contextual, morfolégica
y jerdrquica; y 3) clasificar la imagen usando los objetos como unidades minimas de trabajo (Blaschke
2010). Para realizar la clasificacion de la imagen se deben tener en cuenta qué caracteristicas de los
objetos son las que pueden aportar mayor informacién para una clasificacidn correcta, teniendo en
cuenta que estas caracteristicas variaran de un problema de clasificaciéon a otro. Ademas y con el fin
de conseguir buenos resultados, el analista de imagenes debe plasmar su conocimiento y su forma
de reconocer los objetos en algoritmos que imiten la manera en que el cerebro humano reconoce los
objetos en el mundo real. Una vez logrado lo anterior, se alcanza otra de las ventajas del OBIA, la
transferibilidad de los algoritmos (Laliberte et al. 2011). En otras palabras, el objetivo ultimo es que
una vez que un algoritmo se ha desarrollado para cierta aplicacidon en una zona concreta, pueda ser

transferido con pequefios cambios para su utilizacidon con el mismo objetivo en otras areas.

Las técnicas OBIA han sido utilizadas con éxito en diferentes aplicaciones dentro del ambito de
la teledeteccién como clasificacién de usos del suelo en zonas mixtas de terreno urbano y agricola
(Ma et al. 2015), analisis de campos de refugiados (Tiede et al. 2010), deteccidn de canales de agua
en humedales (Moffett y Gorelick 2013), clasificacion de arboles y arbustos en zonas forestales
(Hellesen y Matikainen 2013), o clasificacién de manglares (Heumann 2011). Dentro del ambito de la
agricultura, el paradigma OBIA también ha sido aplicado a diversos objetivos como por ejemplo la
cartografia de cultivos (Castillejo-Gonzdlez et al. 2009; Pefia-Barragan et al. 2011), la deteccidn de
lineas de cultivo (Pefia-Barragan et al. 2012) o la caracterizacién de vifiedos (Mathews 2014); siendo
ademas estos dos ultimos ejemplos casos de aplicacién de la metodologia OBIA a informacién

obtenida mediante UAVs en agricultura
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NIVEL 1: PARCELAS DE CULTIVO

*Relaciones contextuales: limites con otras parcelas

* Relaciones jerarquicas: numero de lineas de cultivo que incluye,
ensidad de lineas

- NIVEL 2: LINEAS DE CULTIVO

+ Relaciones contextuales: diferencias en el nimero de
plantas con lineas vecinas

* Relaciones jerarquicas: plantas que incluye cada linea,
parcelaen que esta incluida

NIVEL 3: PLANTAS INDIVIDUALES

* Relaciones contextuales: relaciones con plantas
vecinas, con el suelo circundante

* Relaciones jerarquicas:linea en la que estan

incluidas

Figura 3. Representacion grdfica de las relaciones entre objetos, ejemplo con parcela de cultivo herbdceo.

7. CARTOGRAFIA DE MALAS HIERBAS EN FASE TEMPRANA

Como se ha mencionado anteriormente, un control eficiente y a tiempo de las malas hierbas
en cultivos en post-emergencia temprana es una tarea critica debido a que un uso inapropiado de
herbicidas y por tanto un manejo inadecuado de las malas hierbas pueden originar una reduccién en
el rendimiento y un incremento de potenciales impactos negativos en el medioambiente. Muestra de
ello es el hecho de que los herbicidas sean el grupo de fitosanitarios mas frecuentemente detectado
en andlisis de aguas subterraneas y superficiales (Carter 2000). El riesgo de contaminacién del agua y
del medioambiente en general podria ser reducido mediante el SSWM dirigiendo las aplicaciones

herbicidas Unicamente a los rodales de malas hierbas presentes en el cultivo.

El control deficiente de las malas hierbas esta relacionado en ocasiones con un uso incorrecto
de los herbicidas resultante de tres problemas principales. El primero es aplicar herbicidas cuando las
malas hierbas no estan en el momento fenoldgico adecuado (generalmente cuando tienen de 2 a 6
hojas verdaderas, aunque depende de la especie o grupo de especies), el segundo es la aplicacién de
herbicidas sin considerar ningiin umbral de aplicacién (i.e., el nivel de infestacidén por encima del cual
es necesario tratar (Swanton et al. 1999), y el tercero es aplicar herbicidas sobre todo el campo,
incluso cuando hay zonas libres de malas hierbas debido a su distribucién en rodales (Jurado-
Expdsito et al. 2003; Jurado-Exposito et al. 2005). El primer inconveniente es normalmente resuelto
mediante la experiencia de los agricultores o técnicos. Los otros dos problemas pueden ser

solucionados mediante el desarrollo de estrategias SSWM de acuerdo a umbrales de infestacion
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(Longchamps et al. 2014). Estas estrategias pueden consistir en un tratamiento con un solo herbicida
a los rodales donde sélo un grupo de malas hierbas esta presente (por ejemplo de hoja estrecha o de
hoja ancha), o en el uso de varios herbicidas de acuerdo a la presencia de especies resistentes o
diferentes especies de malas hierbas o de diferentes grupos o una mala hierba especifica
problematica como Orobanche, la cual puede ser un serio problema en la produccién del girasol
(Garcia-Torres et al. 1994; Molinero-Ruiz et al. 2014). Las estrategias de control localizado, ademas
de tener incidencia sobre la produccién del cultivo y el medioambiente, podrian tener un fuerte
impacto econdmico al ayudar a reducir la inversidén que los agricultores realizan en herbicidas, la cual
representé alrededor el 36% del gasto total en fitosanitarios en Espafia en 2015 (AEPLA 2016), y en
torno al 28% del consumo total medio en toneladas de productos fitosanitarios en el periodo 1999-

2014 (Figura 4).
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Figura 4. Comparacion entre el consumo de herbicidas y el resto de fitosanitarios en Espafia en el periodo 1999-

2014 (Instituto Aragonés de Estadistica 2016)

Para llegar a aplicar métodos SSWM, en primer lugar es necesario proceder a la deteccién y
cartografia de las infestaciones de malas hierbas. Estas pueden ser afrontadas de dos maneras,
mediante la deteccidén proxima desde vehiculos terrestres que recorren el campo o mediante la
deteccion remota desde satélite o plataformas aéreas (Lépez-Granados 2011). Los origenes de la
teledeteccion de malas hierbas desde plataformas aéreas se pueden situar en Thornton et al. (1990)
en una investigacion preliminar de técnicas de vigilancia aérea usando un globo de helio a baja altura

para tomar imagenes de la distribucion de la avena loca en un campo de trigo.

De forma general, la discriminacion de las malas hierbas mediante deteccién remota (o

teledeteccion) puede abordarse segln dos aproximaciones metodoldgicas diferentes: considerando
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las malas hierbas en estado fenolégico temprano (desde el estado de plantula hasta 2 - 6 hojas
verdaderas) o en estado fenoldgico tardio (desde el inicio de la floracién o inicio de senescencia).
Utilizando esta ultima aproximacién, se han obtenido resultados satisfactorios en la deteccidn de
malas hierbas utilizando imagenes aéreas (Lépez-Granados et al. 2006; Pefa-Barragan et al. 2007) y
de satélite (Castillejo-Gonzalez et al. 2014; de Castro et al. 2013), reportandose ahorros en herbicida
de hasta el 50%. En estos trabajos se detectaban las malas hierbas en fase tardia para aplicar el
herbicida al afio siguiente en época temprana ya que en la mayoria de los escenarios agricolas el
momento éptimo para el control de las malas hierbas es justo unas pocas semanas después de la
emergencia del cultivo. Esta idea se basa en que las malas hierbas persisten en su localizacion de un
afio para otro si no se controlan (Barroso et al. 2004; Jurado-Expdsito et al. 2004). Sin embargo, si el
objetivo es detectar infestaciones de malas hierbas en fase temprana, las dificultades son mayores
que en el caso de la fase tardia principalmente por las siguientes tres razones (LOpez-Granados
2011): 1) las malas hierbas son de pequefio tamafio, lo que hace necesario trabajar con imagenes
remotas de gran resolucion espacial, a veces pixeles < 5 cm (Robert 1996); 2) las malas hierbas de
hoja estrecha presentes en los cultivos monocotiledéneos (e.g., avena en trigo) o las malas hierbas
de hoja ancha en cultivos dicotiledéneos (e.g., Chenopodium en girasol), generalmente tienen
propiedades espectrales parecidas en fase temprana, lo que disminuye la posibilidad de discriminar
entre clases de vegetacién usando sdélo informacion espectral; y 3) la reflectancia del suelo puede

interferir con la deteccién (Thorp y Tian 2004).

Los problemas comentados anteriormente han ocasionado que, cuando sélo se podia trabajar
con imagenes procedentes de satélites y aviones tripulados, la teledeteccién en fase temprana de
malas hierbas para el desarrollo de estrategias de control localizado no fuera posible. Hoy en dia la
tecnologia UAV ha hecho que la necesidad de una resolucién espacial centimétrica ya no sea una
limitacion. Asimismo, la gran flexibilidad existente en la programacion de vuelos permite que se
tomen las imagenes en el momento que el agricultor estime mas adecuado para la deteccién y
posterior tratamiento de las malas hierbas. Para afrontar los problemas de separabilidad espectral es
la tecnologia OBIA la que aporta las herramientas necesarias para la adecuada clasificacion de las
malas hierbas, permitiendo su discriminacion del cultivo utilizando pardmetros que van mas alla de la
informacidn espectral. De hecho, con anterioridad a esta Tesis Doctoral, algunos trabajos con UAV ya
habian abordado objetivo parecidos, como la distribucion de malas hierbas acuaticas (Goktogan et al.
2010) o la invasion de plantas en la monitorizacion de grandes fincas (Laliberte et al. 2011), trabajo

en el que se incorpord, ademas de tecnologia UAV, una metodologia OBIA.
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8. MONITORIZACION 3D DE CULTIVOS LENOSOS

Tras exponer los conceptos basicos del SSWM en relacion a la teledeteccion mediante
imagenes-UAV, a continuacion se explican los fundamentos en los que se basa la importancia de
monitorizar de forma precisa la arquitectura 3D de los cultivos lefiosos. Los resultados en olivar de
Miranda-Fuentes et al. (2016) han demostrado que carece de base cientifica la extendida creencia de
gue aumentar el volumen de aplicacidn mejora la homogeneidad y la penetracidn de la aplicacién en
la copa, ya que los valores 6ptimos de cobertura en su estudio se obtuvieron utilizando los
volumenes de aplicacidn mas bajos. Pero ademas, la aplicacion de fitosanitarios necesita ser precisa
porque los tratamientos inadecuados pueden llevar a serios problemas como la contaminacién
medioambiental, la presencia de residuos en los alimentos y problemas de salud en los responsables
de la aplicacién. Los tratamientos que se realizan sin tener en cuenta la variabilidad espacial de la
arquitectura foliar de los cultivos lefiosos pueden contribuir a la contaminacién de acuiferos y aguas
subterrdneas. Sin embargo, los agricultores a menudo aplican los productos hasta que se produce

escorrentia como supuesta garantia de alta eficacia bioldgica.

El uso del volumen de copa de los cultivos como base para el calculo y optimizacion de las
aplicaciones de productos quimicos fue discutido y evaluado por Sutton y Unrath (1984). El concepto
del volumen del seto de arboles mantiene que la tasa de aplicacidon de productos quimicos debe
estar basada en el volumen del cultivo en vez de en su area. Siguiendo esta metodologia desarrollada
en manzanos, se han obtenido resultados satisfactorios para adaptar el volumen de aplicacién a las
dimensiones en el caso del vifiedo (Llorens et al. 2010; Pergher y Petris 2008). En los casos
mencionados, una medicién precisa de las dimensiones del cultivo fue vital para el éxito final. En el
caso de olivar, el desafio de los arboles aislados y con gran volumen de copa, como es el caso tanto
de los olivares tradicionales como de los intensivos, es que la forma irregular de la copa hace dificil la
implementacion de los métodos establecidos para la estimacidn de su volumen (Miranda-Fuentes et
al. 2016). Normalmente, las principales dimensiones del arbol son medidas de manera manual con
un intenso trabajo de campo. A continuacién, el volumen de copa es estimado con modelos
empiricos o con ecuaciones que consideran que los arboles son sélidos geométricos (West 2009). Sin
embargo, realizar estos muestreos a escala de campo exige una inversidon de tiempo considerable y
generalmente se generan resultados inciertos debido a la falta de ajuste de los arboles reales a los
modelos geométricos, o a la gran variabilidad presente en los cultivos que puede afectar la

adecuacién de modelos basados en mediciones en campo.

Entre las alternativas tecnoldgicas, los escaneres LiDAR y los sistemas de vision estereoscépica
ya sea desde el terreno o embarcados en plataformas aéreas convencionales han sido hasta la fecha

los métodos mds relevantes (Arnd et al. 2012; Escola et al. 2016; Rosell y Sanz 2012), aunque estas
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técnicas también presentan también sus limitaciones en condiciones de campo. Por una parte,
aunque los equipos terrestres son muy precisos en la medicién de la arquitectura arbdrea
(Fernandez-Sarria et al. 2013; Moorthy et al. 2011; Rovira-Mas et al. 2008), son menos eficientes en
grandes superficies de terreno y no son faciles de usar en areas de dificil acceso. Por otra parte, la
resolucién espacial de los datos tomados con aviones tripulados y satélites es aun insuficiente para

detectar las caracteristicas 3D de los arboles en la mayoria de los casos (Rosell y Sanz 2012).

Como se ha comentado en esta Introduccidn, los UAVs pueden volar automaticamente a baja
altura y con gran solape. Ello permite la toma de imagenes de muy alta resolucién espacial (en el
rango de centimetros) y facilita la generacién de modelos digitales de superficies (MDS) mediante
métodos automaticos de reconstruccién basados en los modelos “Structure from Motion”. Lo
anterior es relevante ya que investigaciones recientes se han centrado en la generacidén de MDSs con
UAVs (Nex y Remondino 2014) y su interpretacion sobre dreas agricolas para la caracterizacion
tridimensional de cultivos herbaceos y lefiosos con el objetivo de monitorizar el estado del cultivo y

su crecimiento (Bendig et al. 2014; Burgos et al. 2015).

Sin embargo, para explotar al maximo la tecnologia UAV hay que incorporar la adopcion de
procedimientos automaticos y robustos de analisis de imagen que sean capaces de extraer la
inmensa cantidad de informacion que ofrecen las imagenes. Para alcanzar un alto nivel de

automatizacion y adaptabilidad en esta Tesis Doctoral se propone la aplicacién de técnicas OBIA.

9. OBIJETIVOS DE LA TESIS DOCTORAL

Por todo lo recogido anteriormente, el objetivo general de la presente Tesis ha sido el
desarrollo de metodologias automatizadas y robustas para la cartografia de malas hierbas en cultivos
herbaceos en fase temprana y la monitorizacién tridimensional de cultivos lefiosos, con el fin dltimo
de contribuir a la implementacién de estrategias de técnicas de aplicacién variable en el ambito de la

agricultura de precisidon que permitan un uso sostenible de los productos fitosanitarios.
Este objetivo general se ha desarrollado a través de los siguientes objetivos especificos:

1. Estudiar la configuracién y las especificaciones técnicas de un UAV y de los sensores
embarcados para su aplicacidn en la deteccién temprana de malas hierbas y contribuir a la
generacidn de mapas para un control localizado.

2. Evaluar los indices espectrales en el rango visible existentes en la literatura cientifica para su
uso en la discriminacidn de vegetacion en imdagenes tomadas con un UAV sobre cultivos de

trigo en fase temprana.
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3.

Implementar en un entorno OBIA un método de calculo automatico de umbrales para la
deteccidon de vegetacion en imagenes procedentes de UAV tomadas en cultivos herbaceos en
fase temprana.

Desarrollar una metodologia OBIA automatica y robusta para la discriminacién de malas
hierbas en cultivos herbaceos en fase temprana, asi como evaluar la influencia sobre su
funcionamiento de distintos pardmetros relacionados con la toma de imagenes UAV.
Desarrollar una metodologia OBIA automatica y robusta para la caracterizacion
tridimensional de cultivos lefiosos usando imdagenes y MDS generados a partir de imdagenes

procedentes de un UAV.
La presente Tesis Doctoral esta organizada en 9 capitulos:

En el capitulo 1 se estudian la configuracidn y las especificaciones de un UAV para la
deteccion temprana de malas hierbas y contribuir a la generacidn de mapas para un control
localizado, lo que corresponde al articulo: Torres-Sanchez, J., Lépez-Granados, F., De Castro,
A. |, & Pefia-Barragdn, J. M. (2013). Configuration and Specifications of an Unmanned Aerial
Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE, 8(3), e58210.
doi:10.1371/journal.pone.0058210.

El capitulo 2 refleja el estudio de una serie de indices de vegetacion para la cartografia de la
fraccién de vegetacién en cultivos herbaceos usando imagenes UAV, que fue publicado en el
articulo: Torres-Sanchez, J., Pefa, J. M., de Castro, A. |., & Lépez-Granados, F. (2014). Multi-
temporal mapping of the vegetation fraction in early-season wheat fields using images from
UAV. Computers and Electronics in Agriculture, 103, 104-113.
doi:10.1016/j.compag.2014.02.009.

En el capitulo 3 se presenta la implementacion en un entorno OBIA de un método
automatico de cdlculo de umbrales y su aplicaciéon a la deteccién de vegetacion en imagenes
UAV, trabajo correspondiente al articulo: Torres-Sdnchez, J., Lépez-Granados, F., & Pefa, J.
M. (2015). An automatic object-based method for optimal thresholding in UAV images:
Application for vegetation detection in herbaceous crops. Computers and Electronics in
Agriculture, 114, 43-52. doi:10.1016/j.compag.2015.03.019.

En el capitulo 4 se desarrolla un algoritmo OBIA para la deteccidon de malas hierbas en un
cultivo de maiz en fase temprana usando imagenes tomadas por un UAV, recogido en el
articulo: Pefia, J. M., Torres-Sanchez, J., de Castro, A. I., Kelly, M., & Lépez-Granados, F.
(2013). Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of
Unmanned  Aerial  Vehicle (UAV) Images. PLOS  ONE, 8(10), e77151.
doi:10.1371/journal.pone.0077151.
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e En el capitulo 5 se estudié la influencia de la resoluciéon espectral y espacial sobre el
algoritmo para la deteccidon de malas hierbas en fase temprana, reflejando el articulo: Pefa,
J. M., Torres-Sanchez, J., Serrano-Pérez, A., de Castro, A. |.,, & Lopez-Granados, F. (2015).
Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed
Seedling Detection as Affected by Sensor Resolution. Sensors, 15(3), 5609-5626.
d0i:10.3390/5150305609.

e En el capitulo 6 se aplicd el algoritmo anteriormente disefiado a ortoimagenes tomadas
sobre campos de girasol, y se estudiaron los diferentes mapas prescripcion de herbicida fruto
de la aplicacién de un rango de umbrales de tratamiento, trabajo que fue descrito en el
articulo: Lépez-Granados, F., Torres-Sanchez, J., Serrano-Pérez, A., Castro, A. |. de, Mesas-
Carrascosa, F.-J., & Pefia, J.-M. (2015). Early season weed mapping in sunflower using UAV
technology: variability of herbicide treatment maps against weed thresholds. Precision
Agriculture, 17(2), 183-199. d0i:10.1007/s11119-015-9415-8.

e El capitulo 7 presenta una metodologia para la caracterizacién tridimensional de cultivos
arbdéreos usando tecnologia UAV, correspondiente al articulo: Torres-Sanchez, J., Lopez-
Granados, F., Serrano, N., Arquero, O., & Pefia, J. M. (2015). High-Throughput 3-D Monitoring
of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLOS ONE,
10(6), e0130479. doi:10.1371/journal.pone.0130479.

e En el capitulo 8 se aplica una metodologia OBIA para la monitorizacién 3D de vifiedos,
trabajo presentado en el articulo: Torres-Sanchez, J., Lépez-Granados, F., Jiménez-Brenes,
F.M., Borra-Serrano, I., de Castro, A.l., Pefia, J.M. (2016). 3-D vineyard monitoring with UAV
images and a novel OBIA procedure for precision viticulture applications. Computers and
Electronics in Agriculture, en revision.

e Por ultimo, en el capitulo 9, se enumeran las conclusiones generales obtenidas de los
trabajos anteriormente descritos sobre tecnologia UAV y el desarrollo de metodologias
robustas para la cartografia de malas hierbas en cultivos herbaceos en fase temprana y la
monitorizacidn tridimensional de cultivos lefiosos con el fin dltimo de contribuir a la
implementacion de estrategias de técnicas de aplicacidon variable en el dmbito de la

agricultura de precisidon que permitan un uso sostenible de los productos fitosanitarios.
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Configuration and specifications of an UAV for ESSWM

1. RESUMEN

Una nueva plataforma aérea para la toma de imdagenes remotas ha surgido en los ultimos
afios, el vehiculo aéreo no tripulado (UAV por sus siglas en inglés). Este articulo describe la
configuracion y las especificaciones técnicas de un UAV utilizado para tomar imagenes para el control
localizado de malas hierbas en fase temprana. También se ha evaluado si las imagenes tomadas por
el UAV, al contrario que las tomadas por satélites y plataformas tripuladas, cumplen los requisitos
necesarios para la deteccién en fase temprana de malas hierbas en cuanto a resolucion espacial y
espectral. Dos sensores diferentes, una camara convencional y una camara multiespectral de 6
bandas, y tres alturas de vuelo (30, 60 y 100 m) fueron evaluados sobre un campo de girasol
naturalmente infestado de malas hierbas. Las principales fases del flujo de trabajo con el UAV fueron:
1) planificaciéon de la misién, que incluye consideraciones sobre el drea a volar, las especificaciones
del sensor y las tareas a realizar por el UAV; 2) vuelo UAV y toma de imagenes; y 3)
preprocesamiento de las imagenes, que incluyd la correcta alineacidn de las seis bandas de la cdmara
multiespectral capturadas en cada vuelo. Del estudio de las imagenes se pudo extraer que la
resolucién espacial, el area cubierta por cada imagen y el tiempo de vuelo fueron muy sensibles a la
altura de vuelo. A menor altitud, el UAV tomd imagenes de mayor resolucidn espacial, aunque el
numero de imagenes necesitado para cubrir el campo entero podria ser un factor limitante debido a
la energia necesaria para una mayor duracion de vuelo y a los requerimientos computacionales para
el posterior mosaicado de las imagenes. A partir de las imagenes tomadas se calcularon tres indices
espectrales. Las diferencias espectrales entre malas hierbas, cultivo y suelo fueron significativas para
los indices de vegetacién estudiados (ExG, NGRDI, NDVI), principalmente a 30 m de altura. Sin
embargo, la mayor separabilidad espectral se dio para vegetacién y suelo desnudo con el NDVI. Estos
resultados sugieren que es necesario llegar a un balance entre la resolucién espacial y espectral para
optimizar el plan de vuelo de acuerdo al objetivo agronémico buscado, teniendo en cuenta el tamaiio

del menor objeto que se necesita detectar (malas hierbas individuales o rodales de malas hierbas).

2. ABSTRACT

A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle
(UAV). This article describes the technical specifications and configuration of a UAV used to capture
remote images for early season site- specific weed management (ESSWM). Image spatial and spectral
properties required for weed seedling discrimination were also evaluated. Two different sensors, a

still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m)
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were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the
following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing.
Three different aspects were needed to plan the route: flight area, camera specifications and UAV
tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral
imagery and the orthorectification and mosaicking of the individual images captured in each flight.
The image pixel size, area covered by each image and flight timing were very sensitive to flight
altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the
number of images needed to cover the whole field may be a limiting factor due to the energy
required for a greater flight length and computational requirements for the further mosaicking
process. Spectral differences between weeds, crop and bare soil were significant in the vegetation
indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised
Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was
obtained between vegetation and bare soil with the index NDVI. These results suggest that an
agreement among spectral and spatial resolutions is needed to optimise the flight mission according
to every agronomical objective as affected by the size of the smaller object to be discriminated

(weed plants or weed patches).

3. INTRODUCTION

Precision agriculture (PA) is defined as “a management strategy that uses information
technology to bring data from multiple sources to bear on decisions associated with crop production”
(National Research Council (U.S.) 1997). PA encompasses all the techniques and methods for crop
and field management by taking into account their local and site-specific heterogeneity and
variability (Lelong et al. 2008). Within the context of PA, early season site-specific weed management
(ESSWM) involves the development of techniques to detect the weeds growing in a crop and the
application of new technologies embedded in specific agricultural machinery or equipment to control
them successfully, taking action to maximise economic factors and reduce the environmental impact
of the control measurements applied (Christensen et al. 2009). The efficient development of these
practices somehow relies on the use of remote sensing technology for collecting and processing
spatial data from sensors mounted in satellite or aerial platforms. This technology has been widely
applied in agricultural studies, allowing the mapping of a variety of factors (Lee et al. 2010), including
crop conditions (Houborg et al. 2009), soil properties (Lopez-Granados et al. 2005), water content
(Meron et al. 2010) and weed distribution (de Castro et al. 2012), among others. Piloted aircraft and

satellites are traditionally the primary platforms used to obtain remote images for local to global
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data acquisition. However, these platforms present problems for many aspects of precision
agriculture because they are limited in their ability to provide imagery of adequate spatial and
temporal resolutions and are strongly affected by weather conditions (Herwitz et al. 2004). In the
case of ESSWM, good results have been obtained in late growth stages (normally at the flowering
stage) using aerial (Lopez-Granados et al. 2006; Pefia-Barragan et al. 2007) and satellite (de Castro et
al. 2013) images, with herbicide savings of more than 50% reported. Nevertheless, in most weed-
crop scenarios, the optimal weed treatment is recommended at an early growth stage of the crop,
just a few weeks after crop emergence. In this stage, mapping weeds using remote sensing presents
much greater difficulties than in the case of the late-stage season for three main reasons (Lopez-
Granados 2011): 1) weeds are generally distributed in small patches, which makes it necessary to
work with remote images at very small pixel sizes, often on the order of centimetres (Robert 1996);
2) grass weeds and monocotyledonous crops (e.g., Avena spp. in wheat) or broad-leaved weeds and
many dicotyledonous crops (e.g., Chenopodium spp. in sunflower) generally have similar reflectance
properties early in the season, which decreases the possibility of discriminating between vegetation
classes using only spectral information; and 3) soil background reflectance may interfere with

detection (Thorp and Tian 2004).

Today, difficulties related to spatial and temporal resolutions can be overcome using an
Unmanned Aerial Vehicle (UAV) based remote sensing system, which has progressed in recent years
as a new aerial platform for image acquisition. UAVs can fly at low altitudes, allowing them to take
ultra-high spatial resolution imagery and to observe small individual plants and patches, which has
not previously been possible (Xiang and Tian 2011). Moreover, UAVs can supply images even on
cloudy days, and the time needed to prepare and initiate the flight is reduced, which allows greater
flexibility in scheduling the imagery acquisition. Other advantages of UAVs are their lower cost, and

the lower probability of serious accidents compared with piloted aircraft.

Examples of applications of UAVs in agricultural studies are becoming more noticeable in the
literature. For instance, Hunt et al. (2005) evaluated an aerobatic model aircraft for acquiring high-
resolution digital photography to be used in estimating the nutrient status of corn and crop biomass
of corn, alfalfa, and soybeans. In other cases, an unmanned helicopter was tested to monitor turf
grass glyphosate application (Xiang and Tian 2011), demonstrating its ability to obtain multispectral
imaging. Other UAV models have been developed, such as the six-rotor aerial platform used by
Primicerio et al. (2012) to map vineyard vigour with a multi-spectral camera. Recently, Zhang and
Kovacs (2012) reviewed the advances in UAV platforms for PA applications. In this review, they

indicated the phases in the production of the remote images (including acquisition, georeferencing
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and mosaicking) and the general workflow for information extraction. Generally, all these authors
concluded that these systems provide very promising results for PA and identified some key factors
for equipment and system selection, such as maximum UAV payload capacity, platform reliability and
stability, sensor capability, flight length and UAV manoeuvrability, among others (Hardin and Hardin
2010; Hardin and Jensen 2011; Andrea S. Laliberte et al. 2010).

To our knowledge, however, no detailed investigation has been conducted regarding the
application of this technology in the field of ESSWM, in which remote images at centimetre-scale
spatial resolution and a narrow temporal window for image acquisition are required (Gray et al.
2008). Therefore, this paper defines the technical specifications and configuration of a quadrocopter
UAV and evaluates the spatial and spectral requirements of the images captured by two different
sensors (a commercial scale camera and a multispectral 6-channel camera) with the ultimate aim of
discriminating weed infestations in a sunflower crop-field in the early growing season for post-
emergence treatments. Moreover, the steps for preparing and performing UAV flights with both
cameras are described as well as the relationships amongst flight altitude, pixel size, sensor

properties and image spectral information.

4. MATERIALS AND METHODS

4.1. UAV description

A quadrocopter platform with vertical take-off and landing (VTOL), model md4-1000
(microdrones GmbH, Siegen, Germany), was used to collect a set of aerial images at several flight
altitudes over an experimental crop-field (Figure 1). This UAV is equipped with four brushless motors
powered by a battery and can fly by remote control or autonomously with the aid of its Global
Position System (GPS) receiver and its waypoint navigation system. The VTOL system makes the UAV
independent of a runway, so it can be used in a wide range of different situations and flight altitudes.
The UAV’s technical specifications and operational conditions, provided by the manufacturer, are

shown in Table 1.

The whole system consists of the vehicle, the radio control transmitter, a ground station with
the software for mission planning and flight control, and a telemetry system. The radio control
transmitter is a handheld device whose main tasks are to start the vehicle’s engines, manage take-off
and landing, control the complete flight in the manual mode, and activate the autonomous
navigation system. The control switchboard consists of several triggers, pushbuttons, scroll bars, a

display, and an antenna, and it is equipped with a RF-module synthesiser, which enables the

44 Tesis doctoral



Configuration and specifications of an UAV for ESSWM

selection of any channel in the 35 MHz band. The ground station works as an interface between the
operator and the vehicle and includes the support software mdCockpit (MDC). MDC allow the UAV
settings to be configured, implements the flight route plan with the Waypoint Editor (WPE) module,
and monitors the flight. The telemetry system collects relevant flight data and retrieves a stream of
information in a plain text scheme that includes GPS position data, attitude, altitude, flight time,
battery level, and motor power output, among many others. All sensors and control devices for flight
and navigation purposes are embedded on-board the vehicle and are managed by a computer
system, which can listen telemetry data and make decisions according to the momentary flight
situation and machine status, thus avoiding that occasional loss of critical communication between

the UAV and the ground station resulting in the vehicle crashing.

Figure 1. The quadrocopter UAV, model md4-1000, flying over the experimental crop-field.
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Table 1. Technical specifications and operational conditions of the UAV, model md4-1000.

UAV specification Value
Technical specifications
Climb rate 7.5m/s
Cruising speed 15.0 m/s
Peak thrust 118 N
Vehicle mass 2.65 Kg approx. (depends on configuration)
Recommended payload mass 0.80 Kg
Maximum payload mass 1.25Kg
Maximum take-off weight 5.55 Kg
Dimensions 1.03 m between opposite rotor shafts
Flight time Up to 45 min (depends on payload and wind)
Operational conditions
Temperature -102Cto 502 C
Humidity Maximum 90%
Wind tolerance Steady pictures up to 6 m/s
Flight radius Minimum 500 m using radiocontrol, with waypoints up to
40 km
Ceiling altitude Up to 1,000 m
Take-off altitude Up to 4,000 m about sea level

Source: UAV manufacturer (microdrones GmbH, Siegen, Germany).

Three persons were employed for the secure use of the UAV: a radio control pilot, a ground
station operator and a visual observer. The radio control pilot manually takes off and lands the UAV
and activates the programmed route during the flight operation. The ground station operator
controls the information provided by the telemetry system, i.e., UAV position, flight altitude, flight
speed, battery level, radio control signal quality and wind speed. The visual observer is on the

lookout for potential collision threats with other air traffic.

4.2. Sensors description

The md4-1000 UAV can carry any sensor weighing less than 1.25 kg mounted under its belly,
although the maximum recommended payload is 0.80 kg. Two sensors with different spectral and
spatial resolutions were separately mounted on the UAV to be tested in this experiment: a still point-
and-shoot camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan), and a six-band
multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA). The
Olympus camera acquires 12-megapixel images in true colour (Red, R; Green, G; and Blue, B, bands)
with 8-bit radiometric resolution and is equipped with a 14-42 mm zoom lens. The camera’s sensor is
4,032 x 3,024 pixels, and the images are stored in a secure digital SD-card. The mini-MCA-6 is a
lightweight (700 g) multispectral sensor composed of six individual digital channels arranged in a 2x3
array. The slave channels are labelled from “1” to “5”, while the sixth “master” channel is used to

define the global settings used by the camera (e.g., integration time). Each channel has a focal length

46 Tesis doctoral



Configuration and specifications of an UAV for ESSWM

of 9.6 mm and a 1.3 megapixel (1,280 x 1,024 pixels) CMOS sensor that stores the images on a
compact flash CF-card. The images can be acquired with 8-bit or 10-bit radiometric resolution. The
camera has user configurable band pass filters (Andover Corporation, Salem, NH, USA) of 10-nm full-
width at half-maximum and centre wavelengths at B (450 nm), G (530 nm), R (670 and 700 nm), R
edge (740 nm) and near-infrared (NIR, 780 nm). These bandwidth filters were selected across the
visible and NIR regions with regard to well-known biophysical indices developed for vegetation
monitoring (Kelcey and Lucieer 2012). Image triggering is activated by the UAV according to the
programmed flight route. At the moment of each shoot, the on-board computer system records a

timestamp, the GPS location, the flight altitude, and vehicle principal axes (pitch, roll and heading).

4.3. Study site and field sampling

The UAV system was tested in a sunflower field situated at the private farm La Monclova, in La
Luisiana (Seville, southern Spain, coordinates 37.527N, 5.302W, datum WGS84). The flights were
authorized by a written agreement between the farm owners and our research group. We selected
sunflower because this is the major oil-seed crop grown in Spain, with a total surface of 850,000 ha in
2012 (MAGRAMA 2012) [25], and because weed control operations (either chemical or physical)
with large agricultural machinery represent a significant proportion of production costs, create
various agronomic problems (soil compaction and erosion) and represent a risk for environmental
pollution. The sunflower seeds were planted at the end of March 2012 at 6 kg ha™ in rows 0.7 m
apart. The set of aerial images were collected on May 15" just when post-emergence herbicide or
other control techniques are recommended in this crop. Several visits were periodically made to the
field from crop sowing to monitor crop growth and weed emergence and, finally, to select the best
moment to take the set of remote images. The sunflower was at the stage of 4-6 leaves unfolded.

The weed plants had a similar size or, in some cases, were smaller than the crop plants (Figure 1).

An experimental plot of 100x100 m was delimited within the crop-field to perform the flights.
The coordinates of each corner of the flight area were collected using GPS to prepare the flight route
in the mission-planning task. A systematic on-ground sampling procedure was carried out the day of
the UAV flights. The procedure consisted of placing 49 square white frames of 1x1 m distributed
regularly throughout the studied surface (Figure 2A). Every frame was georeferenced with a GPS and
photographed in order to compare on-ground weed infestation (observed weed density) and outputs
from image classification (estimated weed density). These numbered cards were also utilised as
artificial terrestrial targets (ATTs) to perform the imagery orthorectification and mosaicking process.

In the course of the UAV flights, a barium sulphate standard spectralon® panel (Labsphere Inc., North
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Sutton, NH, USA) of 1x1 m was also placed in the middle of the field to calibrate the spectral data

(Figure 2B).

Figure 2. Details of the experimental set. a) 1x1 m frame used in the ground-truth field sampling, and b)

reference panel for image spectral calibration.

4.4. UAYV flight and sensors tests

4.4.1. Mission planning

The flight mission was planned with the WPE module of the MDC software installed at the
ground station. The flight route was designed over the orthoimages and the digital elevation model

(DEM) of the flight area previously imported from the application Google Earth™

(Keyhole Inc.,
Mountain View, CA, USA). Three different parameters were needed to plan the route: flight area,
camera specifications and UAV tasks (Table 2). The flight area information includes width and length,
the direction angle of the main side, and the desired overlap in the imagery. The images were
acquired at 60% forward-lap and 30% side-lap. The camera specifications are the focal length and the
sensor size. The UAV tasks refer to the actions that the UAV has to perform once it arrives at each
point for image acquisition, and it includes the number of photos and dwell time in each point. Once
both, this information and the flight altitude were introduced in the WPE module, it automatically
generated the flight route and estimated the flight duration according to the total number of images

planned (Figure 3). The route file was exported to a memory card embedded in the UAV via a

standard serial link.
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Table 2. Data required by the Waypoint Editor software and the route settings used in the experimental field.

Data type Setting value*
Flight area
Width 100 m
Length 100 m
Direction angle 65°
Horizontal overlapping 60 %
Vertical overlapping 30%
Camera specifications
Focal length
RGB camera 14 mm
Multispectral camera 9.6 mm
Sensor size (width x length)
RGB camera 17.3x13 mm
Multispectral camera 6.66 x 5.32 mm
UAV tasks
Dwell S5s

Number of images

* Values used in the experimental field.
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Figure 3. Screen shot of the Waypoint Editor module showing the flight planning.

4.4.2. UAV flight and image acquisition

The preliminary steps before starting the flight were to upload the flight route to the UAV
computer system, attach the camera to the vehicle and check the connectivity and the proper
functioning of the whole system. After these steps, the pilot manually launches the UAV with the
radio control transmitter and next activates the automatic flight route, making the vehicle go to the
first waypoint and then fly along the flight lines until the entire study area is completely covered.

Once all the images are taken, the pilot manually lands the UAV, and the ground station operator
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prepares the vehicle for the next route. During the flight, the ground station operator watches the
UAV telemetry data using the downlink decoder, another component of the MDC software (Figure 4).
This program gives information about: 1) operating time of the UAV, 2) current flight time, 3)
distance from take-off point to the UAV, 4) quality of the remote control signal received by the UAV,

5) downlink quality, 6) battery status, and 7) GPS accuracy.
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Figure 4. Screen shot of the Downlink Decoder module showing the information displayed during a programmed

flight.

In addition to this information, the downlink decoder supports several important dialog pages,

as follows:

— Flight and video. This page shows the video stream captured by the sensor attached to the
UAV, making it easier to control the UAV when it is manually driven. Additional data
displayed in this page are: 1) distance to the UAV, 2) flight altitude above the take-off

position, 3) speed of the UAV, 4) artificial horizon, 5) compass, and 6) roll and tilt angles.

— Technical. This page supplies information about: 1) UAV position (GPS latitude and longitude),
2) UAV altitude (GPS altitude above sea level), 3) current navigation mode, 4) magnetometer
status, 5) barometer status, 6) motor power, 7) momentary status of all the radio control

channels, and 8) limit values of flight altitude, distance and speed.
— Route. This page shows a tridimensional display of the flight path.

— Waypoint. This section shows information about: 1) the flying route followed by the UAV, 2)
the UAV GPS position, and 3) the waypoint command that is being executed at each

moment.

— Sensor-payload. This page displays a diagram with sensor data received from the payload.
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— Recordings. Three diagrams are displayed in this section: 1) comprising motor power and
battery voltage over time, 2) comprising flight attitude (roll, pitch and yaw angles) with GPS
data, and 3) comprising velocity, distance, wind profile, flight altitude and radio-control link

quality.

4.4.3. Multispectral band alignment

The images taken by the still camera (Olympus model) can be used directly after downloading
to the computer, but those taken by the multispectral camera (mini-MCA-6 Tetracam model) require
some pre-processing. This camera takes the images of each channel in raw format and stores them
separately on six individual CF cards embedded in the camera. Therefore, an alignment process is
needed to group the six images taken in each waypoint. The Tetracam PixelWrench 2 (PW2) software
(Tetracam Inc., Chatsworth, CA, USA), supplied with the multispectral camera, was used to perform
the alignment process. The PW2 software provides a band-to-band registration file that contains
information about the translation, rotation and scaling between the master and slave channels. Two
different options were tested: 1) basic configuration of the PW2 software, as applied by Laliberte et
al. (Laliberte et al. 2011), and 2) advanced configuration of PW2, which includes the newest field of
view (FOV) optical calculator, which calculates additional offsets to compensate the alignment for
closer distances. The quality of the alignment process was evaluated with the help of the spectralon®
panel data captured in the images at a 30 m altitude. Spatial profiles were taken across the reference
panel for each method and compared with the non-aligned image. The spatial profiles consisted of
graphics representing the spectral values for each band along a line 45 pixels long drawn in the multi-

band images using the ENVI image processing software (Research System Inc., Boulder, CO, USA).

4.4.4. Spatial resolution and flight length as affected by flight altitude

Three independent flight routes were programmed for each type of camera to cover the whole
experimental field at 30, 60 and 100 m altitude above ground level. The effects of flight altitude and
camera resolution with respect to pixel size, area coverage (number of images per hectare) and flight
duration were studied, and their implications for weed discrimination in the early season were

discussed.

4.4.5. Spectral resolution as affected by flight altitude

To perform weed mapping based on UAV images, two consecutive phases are usually required

(Lépez-Granados 2011): 1) bare soil and vegetation discrimination, which would allow obtaining a
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two-classes image with vegetal cover (crop and weeds together) and bare soil, 2) crop and weeds
discrimination, in which the zones corresponding to crop are identified and masked, and finally, the
detection and location of weeds are obtained. To determine the limitations of each sensor with
regard to both phases, spectral values of the three covers present in the field (bare soil, crop and
weeds) were extracted. These spectral values were collected in 15 randomly selected sampling areas
for each soil use from the images taken during all the flight missions (i.e., both sensors at 30, 60 and

100 m altitudes).
Three well-known vegetation indices (VIs) were derived from these values:
— Normalised Difference Vegetation Index (NDVI, (Rouse et al. 1974))
NDVI = (NIR-R)/(NIR+R) (1)
— Normalised Green-Red Difference Index (NGRDI, (Gitelson et al. 2002)),
NGRDI = (G-R)/(G+R) (2)
— Excess Green Index (ExG, (Ribeiro et al. 2005; Woebbecke et al. 1995)).
ExG=2g-r-b (3)

The potential of the VIs for spectral discrimination was evaluated by performing a least
significant difference (LSD) test at p < 0.01 through a one-way analysis of variance (ANOVA), and
applying the M-statistic (equation 4) presented by Kaufman and Remer (1994) in order to quantify
the histogram’s separation of vegetation indices. JIMP software (SAS, Cary, NC, USA) was employed to

perform the statistical analysis.
M= (MEANcIassl - MEANCIassZ) / (oclassl - GC|aSSZ) (4)

M expresses the difference in the means of the class 1 and class 2 histograms normalized by
the sum of their standard deviations (o). Following the research strategy and steps mentioned
before, class 1 and class 2 were either, vegetation and bare soil, where vegetation was weeds and
crop studied together, or weeds and crop. M values are indicative of the separability or
discriminatory power of classes 1 and 2 considered in every step. Two classes exhibit moderate
separability when M exceeds 1, showing easier separation for larger M values which will provide a
reasonable discrimination (Smith et al. 2007). According to Kaufman and Remer (1994), the same
difference in means can give different measures of separability depending on the spread of the
histograms. Wider histograms (larger o) will cause more overlap and less separability than narrow

histograms (smaller o) for the same difference in means.
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5. RESULTS AND DISCUSSION

5.1. Image pre-processing

5.1.1. Band alignment of multispectral imagery

The images acquired by both cameras were downloaded to a computer by inserting their
memory cards into a card reader and copying the data. An alignment process was performed on the
multispectral images to match the six bands into a single readable file. The alignment results were

examined visually and evaluated using spatial profiles (Figure 5).

Alignment Method
NoAlignment Alignment with PW2

Speciral Band
Blue (450nm)
— Green(530nm)
= Red {670nm)
= *Red (700nm)
-+ Red-edge (740nm)
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200
— NIR (780nm)
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Figure 5. Images captured by the multispectral camera and spatial profiles depicting comparison of band-to-
band alignment. a) No alignment, b) Alignment by using the basic configuration of the PW2 software, and c)

Alignment by using the PW2 software plus the field of view (FOV) optical calculator.

The displacement among the curves for each channel in the spatial profiles makes evident the
band misalignment of the original non-aligned images. The non-aligned images showed halos around
the reference objects (Spectralon and vegetation) and noise in the soil background (Figure 5A). These
halos and noise were still recognisable in the image aligned using the basic configuration of the PW2
software (Figure 5B), although they were lesser than in the non-aligned image. These results are
similar to those obtained by Laliberte et al. (2011), who reported poor alignment results using PW2

software with the mini-MCA imagery. To solve this problem, they developed the local weighted
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mean transform (LMWT) method and obtained a satisfactory alignment. However, the latest version
of the PW2 software, launched in 2012, which includes the FOV optical calculator, performed a good
alignment and allowed elimination of the halos and a high reduction of the background noise (Figure
5C). In fact, these results seem to be quite similar to those achieved using the LMWT method. A good
alignment of all the individual bands is crucial for subsequent image analysis, especially when
spectral values of different objects of the image are extracted. The vegetation objects present in a
weed-crop scenario in the early season are very small, as a consequence a poor alignment might
include pixels not belonging to the objects of interest, drastically reducing the success of the image

analysis and classification.

Next to the alignment process, the PW2 software generated a unique multi-band image file
that is incompatible with the mosaicking software. Therefore, the last step was to convert this multi-

band file to a TIFF-readable format using the ENVI software.

5.1.2. Image orthorectification and mosaicking

A sequence of images was collected in each flight mission to cover the whole experimental
crop-field. An important task prior to image analysis was the combination of all these individual and
overlapped images by applying two consecutive processes of orthorectification and mosaicking. The
Agisoft Photoscan Professional Edition (Agisoft LLC, St. Petersburg, Russia) software was employed in
this task. In the first step, the software asks for the geographical position and principal axes (roll,
pitch and yaw) of the vehicle in each acquired image. Next, the software automatically aligns the
photos. Finally, some ATT’s coordinates are added to assign geographical coordinates to the image.
Then, the software automatically performs the orthorectification and mosaicking of the imagery set
into a single image of the whole experimental field (Figure 6). The resultant ortho-mosaic shows a
high-quality landscape metric and accurate crop row matching between consecutive images, which

guarantees good performance of the subsequent image classification.
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Figure 6. Ortho-mosaic of the whole experimental field. Composed from six individual images taken by the still

RGB camera at 100 meters altitude.

5.2. Effect of flight altitude on image spatial resolution and flight time

The image spatial resolution and the area covered by each image as affected by the UAV flight
altitude and the type of camera are shown in Figure 7. The imagery pixel size was directly
proportional to the flight altitude. The still RGB camera captured images with pixel sizes of 1.14 cm
and 3.81 cm, while the multispectral camera captured images with pixel sizes of 1.63 cm and 5.42 cm
at flight altitudes of 30 and 100 m, respectively (Figure 8). At these altitudes, the area covered by
each image of the still RGB camera increased from 0.16 ha (46 x 35 m) to 1.76 ha (153 x 115 m) and
of the multispectral camera from 0.04 (21 x 17 m) to 0.38 ha (69 x 55 m), respectively. The
differences between both types of images were due to the cameras’ technical specifications (Table
2). The camera focal length affects both the pixel size and the area covered by each image, while the

camera sensor size only influences the imagery pixel size.
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Figure 7. Image spatial resolution and coverage as affected by flight altitude and type of camera.

A crucial feature of the remote images for weed mapping in the early season is their high
spatial resolution, which can be achieved with low-altitude flights. Of great importance is defining
the optimum pixel size needed according to each specific objective, which is calculated from the size
of the weed seedlings to be discriminated, the distance between crop rows and the crop type. In
general, at least four pixels are required to detect the smallest objects within an image (Hengl 2006).
Accordingly, if the objective is the discrimination of individual weed plants, the pixel size should be
approximately 1-4 cm, which corresponds to flight altitudes of 27 to 105 m in the case of the still RGB
camera and from 19 to 74 m in the case of the multispectral camera. However, when weed patch
detection is aimed, the remote images could have a pixel size of 5 cm or even greater, which

corresponds to a flight altitude higher than 100 m in both cameras.
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Figure 8. UAV images collected by the two cameras. Still RGB camera (a, b) and multispectral camera (c, d) at

30 m (a, c) and 100 m (b, d) flight altitude.

The UAV acquired imagery with 60% forward lap and 30% side lap. From this overlapping and
the camera sensor size, the WPE module calculated the number of images needed to capture the
whole experimental field and, consequently, the time taken by the UAV to collect them at each flight
altitude (Figure 9). The number of images per ha and the flight length were greater when using the
multispectral camera, decreasing from 117 images ha™ and 27 min at a 30 m altitude to 12 images
ha™ and 6 min at a 100 m altitude. For the still RGB camera, these variables ranged from 42 images
ha™ and 12 min at 30 m altitude to 6 images ha™ 5 min at 100 m. A very large number of images can
limit the mosaicking process because the number of images per hectare strongly increased at very
low altitudes following an asymptotic curve. In addition, the operation timing is limited by the UAV
battery duration. All these variables have strong implications in the configuration of the optimum
flight mission for weed mapping in the early season, which involves two main conditions: 1) to
provide remote images with a fine spatial resolution to guarantee weed discrimination, and 2) to
minimise the operating time and the number of images to reduce the limitation of flight duration and

image mosaicking, respectively.
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Figure 9. Flight length and number of images per ha as affected by flight altitude and camera.

5.3. Effect of flight altitude on image spectral resolution

Spectral information captured by each camera at three flight altitudes was studied to
determine significant differences at the pixel level between class 1 and class 2 in the two phases
previously mentioned, i.e. between vegetation cover and bare soil, and between weeds and crop.

The range and average spectral pixel values of the VlIs, and M-statistics are shown in Table 3.

First of all, it was crucial to explore the spectral differences between vegetation and bare soil
to identify the potential to perform the first step of our research scheme, such an approach should
point out the significant variations in spectral data of both classes, indicating which set of Vs,
cameras and altitudes were able for their discrimination. All the indices showed significant
differences between vegetation and soil and, in most cases, M-statistics performed reasonably well
exceeding 2, being NDVI the index that achieved the highest spectral separability at the three flight
altitudes. This is due to NDVI emphasises the spectral response of the NIR band which characterises
vegetation vigour and it is less sensitive to soil background effects than the other two indices. The

magnitude of M-statistic, usually higher than 2.5 (excepting for ExG at 30 m and 60 altitudes and
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multispectral camera), offer satisfactory results for a high robustness of vegetation discrimination in
all the scenarios. Kaufman and Remer (1994) reported M values ranging from 1.5 to 0.5 for mapping
dense vegetation in forests, whereas Smith et al. (2007) obtained M values between 0.24 and 2.18
for mapping burned areas. According to our findings, the M achieved a much higher value (M = 8.9
for multispectral camera and NDVI index) suggesting robust separability of classes. NDVI could be the
best index to perform the first phase of the proposed classification strategy, although NGRDI and ExG
also showed an overall good capacity for distinguishing vegetal cover, which would be very relevant

due to RGB camera is much cheaper and easier to use than the multispectral camera.

In order to perform the second proposed phase, it is necessary to test if weeds and crop can
be discriminated using either RGB camera or the multispectral sensor. As a general statement, the
multispectral camera showed much higher capacity to discriminate crop and weeds than the RGB
camera. The better performance of the multispectral camera may be caused by its narrow sensor
bandwidth. This camera uses filters with a 10 nm bandwidth, which reduces the interferences caused
by other wavelengths, while the RGB camera acquires information in three wider spectral wavebands
from the entire visible spectrum. Thus, means of NGRDI and ExG were not significantly different for
crop and weeds at any flight altitude and M-statistic values were the lowest ones, excepting for ExG
at 30 m altitude where M = 1.61. However, even at this altitude, M-statistic value is quite lower than
the obtained for ExG and the multispectral camera (M = 3.02). A preliminary conclusion could be that
the RGB camera is able to discriminate weeds and crop using images from ExG at 30 m altitude.
However, one of the key question to elucidate at this point is to determine if M = 1.61 provides
enough robustness for mapping weeds and crop. That doubt could be clarified going to Figure 10
which shows the significant spectral differences among soil, weeds and crop in all the scenarios. Note
that spectral differences among soil, and weeds and crop at 30 m altitude for ExG and RGB camera
are clearly significant; however, the range of the standard deviation (see points in Fig. 10) of weeds
and crop causes an overlapping which could produce a deficient discrimination between weeds and
crop. Therefore, Table 3 offers an overall overview of separation between vegetation and soil, and
weeds and crop; however these results must be deeply studied observing the ranges of minimum

and maximum spectral values of every VI (Table 3) and ranges of standard deviation (Figure 10).
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Figure 10. Vegetation index values of each class of soil cover (bare soil, weed and crop). The index values are
affected by flight altitude and type of camera. Within a group, box-plots followed by the same letter do not
differ significantly according to LSD test at P < 0.01.

In the multispectral camera, NGRDI and ExG were significantly different for weeds and crop in
all the flight altitudes tested. However, despite these significant differences observed and as stated
before, the M-statistic and Figure 10 must be taken into account since both help to quantify the risk
of misclassification due to the overlapping between value ranges of the vegetation indices studied.
For instance, at 60 m altitude, NGRDI showed a significant spectral difference for weeds and crop;
however M-statistic was lower than 1 (M = 0.81). This indicates that, apart from a significant spectral
difference, a poor separation is expected between pixels from weeds and crop. This can be clearly
appreciated in Figure 10 where the range of the standard deviation between weeds and crop
involves an overlapping of values and this is the reason for which having a significant spectral

discrimination this is not sufficient to achieve a satisfactory separability (M higher than 1).

The case of ExG is different since this vegetation index showed significant spectral differences
and M values higher than 1 at any flight altitude, although M was only slightly superior than 1 (M =
1.19) at 60 m altitude. This points out that a good separation would be expected at 30 m and

probably at 100 m; however, have the significant spectral differences and M = 1.19 obtained in Table
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3 sufficient discriminatory power to properly separate crop and weeds at 60 m altitude. Figure 10
again shows that this magnitude of M probably is not as much as required to successfully reach this
objective due to the apparent overlapping of box-plots of weeds and crop and, consequently, a much
more difficult separation would be expected at 60 m altitude. The only index studied using the NIR
band was NDVI and it was not able to discriminate between crop and weeds at any flight altitude; in
fact, NDVI showed the lowest M-statistic values among the indices calculated from the multispectral

camera.

As mentioned in the previous section and according to the objective of minimising the
operating time and the number of images taken to reduce the limitation of UAV flight duration and
image mosaicking, the optimum flight mission may be to capture images at the highest altitude
possible. However, the highest spectral differences and M values of pixels were obtained at the
lowest altitudes, i.e., pixel-based methods may be unsuccessful in weeds and crop discrimination in
seedling stages at altitudes higher than 30 m due to the spectral similarity among these vegetation
classes. Currently, spectral limitations may be solved by implementing advanced algorithms such as
the object-based image analysis (OBIA) methodology (Laliberte and Rango 2009). The OBIA
methodology identifies spatially and spectrally homogenous units named objects created by grouping
adjacent pixels according to a procedure known as segmentation. Afterwards, multiple features of
localisation, texture, proximity and hierarchical relationships are used that drastically increase the
success of image classification (Blaschke 2010; Pefia-Barragan et al. 2011). In crop fields at an early
stage, the relative position of the plants in the crop rows, rather than their spectral information, may
be the key feature to distinguishing them. Consequently, every plant that is not located in the crop
row can be assumed to be a weed. Therefore, according our results a strategy for a robust
classification of UAV images could be developed involving two steps: 1) discriminating vegetation
(weeds and crop) from bare soil by using spectral information, and 2) discriminating weeds from
crop-rows using the OBIA methodology. Therefore, future investigations will be essential to
determine the potential of OBIA techniques to distinguish and map weeds and crop using UAV
imagery at higher flight altitudes and taken when weeds and crop are at the early phenological
stages. Our recent research using OBIA methodology has shown the improvement of using satellite
imagery for mapping crops (Castillejo-Gonzalez et al. 2009; Pefia-Barragan et al. 2011) or weeds at
late phenological stages in winter wheat (de Castro et al. 2013). Our hypothesis for further work is
based on the idea that the OBIA methodology has confirmed to be a powerful and flexible algorithm
adaptable in a number of agricultural situations. The main aim would be to discriminate and map

early weeds to enhance the decision making process for developing in-season ESSWM at high
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altitudes using RGB and ExG index compared to multispectral camera and the pixel-based image
analysis. This would allow reducing the number of UAV imagery to improve the performance of the
UAV (flight length and efficiency of energy supply) and the mosaicking process. This approach could
be a more profitable method for mapping early weed infestations due to both, the covering of larger
crop surface area and RGB cameras are cheaper and economically more affordable than
multispectral cameras. Considering that the UAV development is a substantial investment, the

possibility of using RGB cameras would reduce significantly the additional costs.

6. CONCLUSIONS

Weeds are distributed in patches within crops and this spatial structure allows mapping
infested-uninfested areas and herbicide treatments can be developed according to weed presence.
The main objectives of this research were to deploy an UAV equipped with either, RBG or
multispectral cameras, and to analyze the technical specifications and configuration of the UAV to
generate images at different altitudes with the high spectral resolution required for the detection
and location of weed seedlings in a sunflower field for further applications of ESSWM. Due to its
flexibility and low flight altitude, the UAV showed ability to take ultra-high spatial resolution imagery

and to operate on demand according to the flight mission planned.

The image spatial resolution, the area covered by each image and the flight timing varied
according to the camera specifications and the flight altitude. The proper spatial resolution was
defined according to each specific objective. A pixel lower than 4 cm was recommended to
discriminate individual weed plants, which corresponded to flight altitudes below 100 m. If the
objective was weed patch detection, the UAV can fly to a higher altitude to obtain remote images
with pixels of 5 cm or greater. However, the number of images needed to cover the whole field could
limit the flight mission at a lower altitude due to the increased flight length, problems with the

energy supply, and the computational capacity of the mosaicking software.

Spectral differences between weeds, crop and bare soil were significant for NGRDI and ExG
indices, mainly at a 30 m altitude. At higher altitudes, many weed and crop pixels had similar spectral
values, which may increase discrimination errors. Greater spectral separability was obtained
between vegetation and bare soil with the index NDVI, suggesting the employment of multispectral
images for a more robust discrimination. In this case, the strategy for improving the image
mosaicking and classification could be to implement the OBIA methodology to include features of

localisation and proximity between weed and crop plants. An agreement among spectral and spatial
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resolutions is needed to optimise the flight mission according to the size of the smaller objects to be

discriminated (weed plants or weed patches).

The information and results herein presented can help in the selection of an adequate sensor
and to configure the flight mission for ESSWM in sunflower crops and other similar crop row
scenarios (e.g., corn, sugar beet, tomato). Despite the initial complexity of management of the UAV
and its components and software, and after a period of training the pilots and operators, the

described workflow can be applied recursively.
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1. RESUMEN

Cartografiar la vegetacion en campos de cultivo es un primer paso importante en las
aplicaciones de la teledeteccion a la agricultura de precision. Las plataformas aéreas tradicionales
como aviones y satélites no son adecuadas para estas tareas en fase temprana debido a su baja
resolucién temporal y espacial. En este articulo, un vehiculo aéreo no tripulado (UAV por sus siglas en
inglés) equipado con una cdmara convencional (que toma imagenes en el espectro visible) fue usado
para tomar imdagenes de muy alta resolucidn espacial sobre un campo de trigo en fase temprana. En
estas imagenes, seis indices espectrales (CIVE, ExG, ExGR, indice de Woebbecke, NGRDI, VEG) y dos
combinaciones de estos indices fueron calculados y evaluados para la cartografia de la fraccion de
vegetacidon. También se estudié la influencia en la precisidon de la clasificacién de la altura de vuelo
(30 y 60 m) y de los dias después de la siembra (DDS) del 35 al 75. Los indices ExG y VEG
consiguieron la mayor precisién en la cartografia de la fraccion de vegetacidn, con valores desde
87,73% a 91,99% a 30 m de altura de vuelo y del 83,74% al 87,82% a 60 m de altura. Estos indices
fueron también espacial y temporalmente consistentes, permitiendo una cartografia precisa de la
vegetacion sobre todo el campo de trigo y en cualquier fecha. Esto proporciona evidencias de que los
indices espectrales en el rango visible, calculados usando una cdmara de bajo coste a bordo de un
UAV volando a baja altura, son una herramienta apropiada para discriminar la vegetacién en campos
de trigo en fase temprana. Esto abre la puerta a la utilizacion de esta tecnologia en aplicaciones de la
agricultura de precision como el manejo localizado de malas hierbas en fase temprana, en el cual

una precisa deteccién de la vegetacion es esencial para clasificar cultivo y mala hierba.

2. ABSTRACT

Mapping vegetation in crop fields is an important step in remote sensing applications for
precision agriculture. Traditional aerial platforms such as planes and satellites are not suitable for
these applications due to their low spatial and temporal resolutions. In this article, a UAV equipped
with a commercial camera (visible spectrum) was used for ultra-high resolution image acquisition
over a wheat field in the early-season period. From these images, six visible spectral indices (CIVE,
ExG, ExGR, Woebbecke Index, NGRDI, VEG) and two combinations of these indices were calculated
and evaluated for vegetation fraction mapping, to study the influence of flight altitude (30 and 60 m)
and days after sowing (DAS) from 35 to 75 DAS on the classification accuracy. The ExG and VEG
indices achieved the best accuracy in the vegetation fraction mapping, with values ranging from
87.73% t0 91.99% at a 30 m flight altitude and from 83.74% to 87.82% at a 60 m flight altitude. These
indices were also spatially and temporally consistent, allowing accurate vegetation mapping over the

entire wheat field at any date. This provides evidence that visible spectral indices derived from
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images acquired using a low-cost camera onboard a UAV flying at low altitudes are a suitable tool to
use to discriminate vegetation in wheat fields in the early season. This opens the doors for the
utilisation of this technology in precision agriculture applications such as early site specific weed

management in which accurate vegetation fraction mapping is essential for crop-weed classification.

3. INTRODUCTION

The mapping of the percentage of green vegetation per unit of ground surface, i.e., the
vegetation fraction (VF), is a major issue in remote sensing. Monitoring the temporal and spatial
variations in the VF in a specific area has many ecological and agricultural applications, such as the
identification of land degradation and desertification (Xiao and Moody 2005), the estimation of the
phenological and physiological status of vegetation (Yu et al. 2013) and the prediction of crop yields
(Yang et al. 2006), among others. In precision agriculture (PA), quantifying the distribution of VF
within a crop-field is a first and crucial step prior to addressing further objectives. One of these
objectives is the detection and mapping of weeds in crop fields, with the ultimate goal of applying
site-specific weed management (SSWM) techniques and controlling weed patches according to their
coverage at each point of the crop-field. In this context, remote imagery for mapping weeds has been
traditionally provided by piloted airborne (de Castro et al. 2012; Pefia-Barragan et al. 2011) or
satellite platforms (de Castro et al. 2013; Martin et al. 2011). However, these platforms are limited in
their ability to provide images with adequate spatial resolution for differentiating crop and weed
vegetation in early development stages for early site specific weed management ESSWM) (Lépez-
Granados 2011). In most crop-weed scenarios and for post-emergence herbicide application, the
optimal date for weed control is when the crop and weeds are in their seedling growth stages (Garcia
Torres and Fernandez Quintanilla 1991), and consequently images at very high spatial resolution

(often on the order of mm or very few cm) are needed (Hengl 2006).

Limitations associated with traditional aerial imagery platforms can be overcome by using
Unmanned Aerial Vehicles (UAV), which have been developed in recent years into a new aerial
platform for image acquisition with a tremendous potential for mapping vegetation cover for
detailed vegetation studies with environmental (Bryson et al. 2010; Laliberte and Rango 2006) and
agricultural objectives (Garcia-Ruiz et al. 2013; Herwitz et al. 2004). UAVs can fly at low altitudes,
allowing them to take ultra-high spatial resolution images (e.g., pixels of a few mm or cm) and to
observe small individual plants and patches, which has not previously been possible (Xiang and Tian
2011). Moreover, UAVs can supply images even on cloudy days, and the time needed to prepare and
initiate the flight is reduced, which allows greater flexibility in scheduling the imagery acquisition.

Other advantages of UAVs are their lower cost and their great flexibility of configuration compared
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with piloted aircraft, which allows the utilisation and testing of low-cost sensors such as conventional
digital cameras. For example, there is widespread agreement among researchers that commercial
cameras have been a powerful tool for assessing green vegetation cover using on-ground imagery
taken with terrestrial platforms (Guijarro et al. 2011; Meyer and Neto 2008; Romeo et al. 2013) and
masts (Motohka et al. 2010; Sakamoto et al. 2011; Yu et al. 2013). Together with their low cost,
another advantage of conventional digital cameras is their high resolution, which is needed when
working in narrow row crops such as wheat. However, to the best of our knowledge, they have not

been used for VF assessment in images collected with an UAV for agricultural proposes.

Image analysis techniques for quantifying vegetation cover are generally based on the use of
vegetation indices (VIs) (Xiao and Moody 2005), which are the product of arithmetic operations
performed with spectral information from the radiation reflected by the vegetation at different
wavelengths. Information derived from Vls is usually less sensitive to illumination and other factors
affecting reflectance (Gitelson et al. 2002). The underlying mechanisms of VIs are well understood,
and they emphasise some features of vegetation cover and facilitate obtaining relevant information
from digital imagery (Delegido et al. 2013). In images at ultra-high spatial resolution, it is necessary to
determine the VI that enhances the differences among pixels containing vegetation and pixels
containing non-vegetation, as well as the threshold value that sets the breakpoint between both
classes. The classification output is necessary for the thresholding operation, which needs to be
optimised for a successful result. There are several automatic methods for threshold calculation,
among which Otsu’s (Otsu 1979) method is one of the most utilised for agronomical issues (Guijarro
et al. 2011; Meyer and Neto 2008). It assumes that the image contains two classes of pixels (bare soil
and vegetation when considering crop scenarios) and then calculates the optimum threshold based

on minimising combined spread (intra-class variance).

To date, VF has been estimated by relating it to VI values in image pixels from airborne and
satellite platforms, in which the pixels include vegetated and non-vegetated zones due to the large
size (from a few square metres to square kilometres) (Barati et al. 2011; Gitelson et al. 2002). Today,
the ultra-high resolution of UAV imagery allows images in which almost every pixel covers only
vegetation or bare soil, with a low proportion of pixels representing a mixed coverage. Therefore, VF
can be calculated as the percentage of pixels classified as vegetation per unit of ground surface. This
is particularly relevant when working with crops such as cereals which are sown in narrow crop rows

because the surface distance between such rows is usually not wider than 15-17 cm.

In addition to adequate thresholding and good spatial and temporal resolution, another
important issue in VF mapping is accurate spatial and temporal consistency. Spatial stability is

needed to assure that VF mapping is accurate in the whole studied area because a VI that works
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appropriately in only a few zones is useless. Temporal stability is recommendable because it makes it
possible to obtain VF maps whenever they are needed. Both parameters make possible the
construction of VF maps without any quality loss in the most adequate moment according to the

objective.

Although previously reported methods have been mostly applied to on-ground images, they
could also be suitable for the remote images captured with UAVs, mainly due to the spatial
resolution of on-ground and UAV images being on the same order of magnitude. Investigations about
detailed evaluation of remote images captured with UAV platforms and their spectral information or
derived vegetation indices with the objective of quantifying VF are currently scarce, although
recently Pefia et al. (2013) developed a method for weed mapping in early-season maize fields using

UAV images.

As part of an overall research program to investigate the opportunities and limitations of UAV
imagery in accurately mapping weeds in early season winter wheat, it is crucial to explore the
potential of generating VF maps from multiple overlapped frames that were mosaicked as a first step
in the proper discrimination of crop rows and weeds. Such an approach should demonstrate the
ability to accurately discriminate weeds grown between crop rows to design a field program of
ESSWM. Consequently, this work evaluated the accuracy, spatial and temporal consistency and
sensitivity of different vegetation indices for a wheat crop that were extracted from visible images
acquired with a low-cost camera installed in an UAV flying. We focused on several acquisition dates
(temporal analysis) and two different flight altitudes. Additionally, to the best of our knowledge, this
is the first work to evaluate the adequate performance of Otsu’s thresholding method for VF

mapping in UAV imagery.

4. MATERIALS AND METHODS

4.1. Study site

The study was performed in a wheat field with flat ground (average slope <1%) situated at the
public farm Alameda del Obispo, in Cérdoba (southern Spain, coordinates 37,856N, 4,806W, datum
WGS84). The wheat crop was sown on November 22" 2012 at 6 kg ha™ in rows 0.15 m apart, and
emergence of the wheat plants started by 15 days after sowing (DAS). The field had an area of about
0.5 ha, and was naturally infested by ryegrass (Lolium rigidum), which is a monocotyledoneus weed
with an appearance very similar to wheat and an analogous phenological evolution. Weed and crop
plants were in the principal stage 1 (leaf development) from the BBCH extended scale (Meier et al.
1997) in the beginning of the experiment, whereas plants were at the principal stage 2 (tillering) in

the last days of the study.
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4.2, UAV flights and remote images

A quadrocopter platform with vertical take-off and landing (VTOL), model md4-1000
(microdrones GmbH, Siegen, Germany), was used to collect a set of aerial images at two flight
altitudes over the experimental crop-field. This UAV (Figure 1) is equipped with four brushless
motors powered by a battery and can fly by remote control or autonomously with the aid of its
Global Position System (GPS) receiver and its waypoint navigation system. The VTOL system makes
the UAV independent of a runway, so it can be used in a wide range of different situations. The
sensor mounted on the UAV to acquire the imagery was a still point-and-shoot camera, model
Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan). The camera acquires 12-megapixel
images in true colour (Red, R; Green, G; and Blue, B, bands) with 8-bit radiometric resolution and is
equipped with a 14-42 mm zoom lens. The camera’s sensor is 4,032 x 3,024 pixels, and the images
are stored in a secure digital SD-card. The camera was set to operate in the automatic mode, which
adjusts the exposure time (shutter speed) and F-stop (aperture) optimally. Image triggering is
activated by the UAV according to the programmed flight route. At the moment of each shoot, the
on-board computer system records a timestamp, the GPS location, the flight altitude, and vehicle
principal axes (pitch, roll and heading). Detailed information about the configuration of the UAV
flights and specification of the vehicle and the camera used can be found in (Torres-Sanchez et al.

2013).

Figure 1. Microdrone MD4-1000 flying over the experimental crop.
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The first set of aerial images was collected at 35 DAS, and then sets were collected at 7-10 day
intervals; the last set was collected at 75 DAS. Therefore, images were obtained at different growth
stages. On every date, two flights were performed at different altitudes: 30 m and 60 m. These flight
altitudes resulted in spatial resolutions of 1.14 and 2.28 cm, respectively. The flight routes were
programmed into the UAV software so that the vehicle stopped 5 s at every image acquisition point
to ensure that the camera took a good light measurement. With this configuration, the flights at 30
m and 60 m altitude took 10 and 5 minutes, respectively; and the UAV acquired 36 and 10 images at

30 and 60 m flight altitude, respectively.

In the course of the UAV flights, a barium sulphate standard Spectralon® panel (Labsphere Inc.,
North Sutton, NH, USA) of 1x1 m was also placed in the middle of the field (Figure 2) to calibrate the
spectral data. Digital images captured by each camera channel were spectrally corrected by applying
an empirical linear relationship (Hunt, Jr. et al. 2010). Equation coefficients were derived by fitting

digital numbers of the images located in the Spectralon panel to the Spectralon ground values.

43 DAS

Figure 2. Spectralon and frames in the wheat field.

4.3. Image mosaicking

A sequence of overlapped images was collected in each flight mission to cover the whole
experimental crop-field. An important task prior to image analysis was the combination of all these

individual and overlapped images by applying a process of mosaicking. The imagery had a 30% side-
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lap and a 60% forward-lap to allow correct image mosaicking to generate a complete crop map in the
whole study area. Agisoft PhotoScan Professional Edition (Agisoft LLC, St. Petersburg, Russia) was
employed in this task. The mosaicking process had three principal steps. The first one was the image
alignment, i.e., the software searches for common points in the images and matches them, as well as
finding the position of the camera for each image and refining camera calibration parameters. The
next step was to build the image geometry. Based on the estimated camera positions and images
themselves a 3D polygon mesh, representing the overflown area, was built by PhotoScan software.
Once the geometry was constructed, the individual images were projected over it for orthophoto
generation. The resultant ortho-mosaicked image must be geometrically interoperable and must
shows an accurate crop row matching between both sides of overlapped borderline images, both of

which guarantee good performance of the subsequent image analysis.

4.4, Quantification of vegetation fraction

Six VIs and two VI combinations, based on RGB space, were tested for classifying green

vegetation pixels in the mosaicked images and quantifying vegetation fraction.

- Normalized Green-Red Difference Index (Gitelson et al. 2002)

— (1)

- Excess Green (Woebbecke et al. 1995)

(2)

- Color index of vegetation (Kataoka et al. 2003)

(3)

- Vegetativen (Hague et al. 2006)

with a = 0.667 as in its reference (4)

- Excess Green minus Excess Red (Camargo Neto 2004)

(5)

- Woebbecke Index (Woebbecke et al. 1995)

— (6)
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- Combination (Guijarro et al. 2011)

(7)

- Combination 2 (Guerrero et al. 2012)

(8)

The next normalization scheme was applied in some Vis:

(9)

These VIs were designed to accentuate the green component of the images, and VEG was also
designed to cope with the variability of natural daylight illumination. The applications of the VIs were
able to transform the images from the original RGB three-band space to a greyscale band. All the
mosaicked images from the different dates and flight altitudes were transformed to greyscale images
by the application of the above mentioned Vis. In the greyscale images generated by the Vls, pixels
corresponding to vegetation zones in the field show intensity levels greater than the rest of the

image pixels.

To perform image classification, the value of each greyscale image pixel was compared with a
prefixed threshold; if the pixel value was higher than the threshold, then it was classified as
vegetation. Once the image pixels were classified, the VF was determined as the percentage of pixels

classified as vegetation per unit of ground surface:

(10)

The VF was calculated for 96 square frames of three different areas (16, 4 and 1 m?)
distributed regularly throughout the studied surface (Figure 2). The VF values for every frame were
calculated using different thresholds (Table 1) in the greyscale images coming from the application of
the studied VIs to all the mosaicked images from every date and flight altitude. The threshold ranges
for every index were established to cover the lowest and highest VF values in the whole image. Once
the threshold range was established for every VI, it was automatically divided to obtain 10
equidistant values within this range. Then, every one of these 10 values was tested in the

determination of VF for 30 and 60 m flight altitude at any flight date.
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Table 1. Thresholds tested to determine the VF for 30 and 60 m flight altitude at any flight date according to the

lowest and highest VF values in the mosaicked.

Vegetation indices Thresholds

NGRDI -0.08 -0.06 -005 -0.03 -001 0001 0003 0005 0006 00.08

ExG 003 005 008 011 014 016 019 022 025 0.27

CIVE 1862 1864 1865 1867 1869 1871 1873 1875 1876 18.78

VEG 090 094 099 103 108 112 117 121 126 130

ExGR 092 -090 -0.87 -0.84 -081 -079 -0.76 -0.73 -0.70 -0.68

com 602 604 607 609 611 613 616 618 620 622
comz2 898 9.00 9.02 904 905 9.07 909 911 912 9.14

wi 611 -438 -2.64 -090 083 257 430 604 778 951

4.5. Evaluation of VF mapping

For validation purposes, a flight at 10 m altitude was used to collect vertical pictures of the
sampling frames. The UAV was programmed to fly continuously taking images every second to obtain
several images for every frame, which allowed the choosing of the best one. The high proximity of
these images to the frames made it possible to visualise individual plants. Therefore, the best image
of every frame was used to extract the observed VF (OVF) data in every sampling point. The accuracy
of the VF estimations was evaluated by comparing them with the observed VF values. The observed
VF data were determined by using the index and threshold that better detected individual plants
according to a visual interpretation (Figure 3). The following expression was calculated to evaluate

the performance of the different indices and thresholds:

(12)

Figure 3. Ten metre altitude frame image and the output of the image after the vegetation classification

process.
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The application of equation (11) resulted in a high accuracy values. The following statistics

from these values were calculated to study the Vis:

- Mean accuracy: calculated for every index as affected by the threshold, flight date, and
altitude. It was used to determine the best threshold for every VI for a specific date and flight
altitude. Once this threshold was selected, VIs could be compared based on their best
operational conditions.

- Standard deviation (SD) of accuracy: calculated for the accuracy values achieved with the
best threshold for every index as affected by the flight date and altitude. Every accuracy
value was related with a specific frame, so it had coordinates on the field; therefore, the SD
measurement of the dispersion from the mean had a spatial meaning in this study. High SD
values indicated that the VI accuracy was not stable over the field, with areas in which the VF
yielded good estimates and others in which it did not.

- Coefficient of variation (CV): calculated for the best mean accuracies of every VI along the six
studied flight dates. It allowed the analysis of how the accuracy of a VI at a flight altitude
varied over the time to select the VIs that achieved better classification results without being

influenced by the flight date.

After the two best VIs were selected, their accuracy values for the best threshold at every date
and flight altitude were distributed in a map using the coordinates of the frames from which they
were calculated. Then, using the values at these points, density maps were generated to spatially
represent the accuracy of the two VIs at every date and flight altitude. The observed and estimated
VFs was also compared for these two Vls using a 1:1 line, which should have a correspondence of 1 in

an ideal situation.

The study of the different thresholds and the accuracies achieved with their application to the
images allowed the selection of the best VI. Additionally, to evaluate the feasibility of automatic
thresholding, Otsu’s method (Otsu 1979) was compared with the best VI from the best date of the
experiment. This methodology was developed to be used on grey level histograms, so we tested it on
the greyscale band generated by the application of the best VI in the RGB original image. In every
validation frame, Otsu’s method automatically applied an optimal threshold based on minimizing
combined intra-class variance. The results of the VF estimation in both cases, i.e., the best VI
threshold and Otsu’s thresholding, were compared to determine if this methodology was applicable

to quantify VF using UAV imagery.

JMP software (SAS, Cary, NC, USA) was employed to perform the data analysis. eCognition

Developer 8 (Trimble GeoSpatial, Munich, Germany) was used to automate the VF quantification for
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all the thresholds, flight altitudes and dates. The Otsu’s thresholds were calculated using Imagel

1.46r (Wayne Rasband, National Institutes of Health, USA).

5. RESULTS

The mean accuracy and the standard deviation at any flight date and altitude was determined
using all the Vls with their corresponding 10 thresholds showed in Table 1. The threshold obtaining
best results for every VI together to its accuracy and standard deviation at any flight date and
altitude are shown in Table 2. At 30 m flight altitude, ExG reached the highest accuracy in the whole
experiment on a concrete date (91.99% at 35 DAS); it also had the best mean accuracy for more
dates (at 35, 43 and 60 DAS), and it showed the highest mean of accuracy over time (90.20%). At the
60 m flight altitude, Meyer achieved the highest mean accuracy for two dates (43 and 49 DAS), and
VEG was also the best for two dates (68 and 75 DAS). The best mean accuracies over the time were

reached by VEG (86.25%), closely followed by ExG (86.15%).

5.1. Classification accuracy of VF as affected by VI and spatial factor

Accuracy results were calculated for every georeferenced frame distributed on the field;
therefore, the SD values were able to give spatial information about the consistency of VF mean
classification accuracy across the experimental field. A low accuracy SD indicated a high spatial
consistency of the VI for estimating VF. The lowest SD values were associated in several cases with
the highest accuracy at each date and flight altitude, and in the other cases they were associated
with the second or third highest accuracy. The ExG, WI and VEG indices showed the lowest SD at one
specific date and flight altitude. The index with the best spatial consistency at 30 m and 60 m flight
altitude was ExG (7.72 and 10.20, respectively), closely followed by VEG (7.75 and 10.22).

5.2. Classification accuracy of VF as affected by VI and temporal factors

The COM, COM2, ExG, ExGR, NGRDI and VEG indices showed similar accuracy values at all the
studied dates; e.g., the ExXG mean accuracy only fluctuated between 91.99% and 87.75%. Thus,
temporal factors did not have a remarkable influence on the estimation of VF by these indices.

However, the CIVE and Meyer accuracies were affected by time, with lower values on the last dates.

The analysis of CV evolution over time was used to determine which VIs showed lower
variability over time. This is an important factor to be studied because it is better to use Vs that
perform accurate VF quantification regardless of the flight date. The ExG and VEG were the indices
with the lowest CVs over the time at the 30 and 60 m flight altitudes, with values of approximately

8.6% 11.8%, respectively.
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5.3. Classification accuracy of VF as affected by VI and the flight altitude

The mean accuracies at 30 m of CIVE, COM, COM2, ExG, ExGR, NGRDI and VEG were always
higher than at the 60 m flight altitude. Only WI at 75 DAS reached a slightly better accuracy at the 60
m altitude. WI also showed the same accuracy at both flight altitudes at 68 DAS. On average, the
accuracy of VF quantification was 3.95% higher at the 30 m altitude. The VI with the greatest
accuracy variations associated with flight altitude was NGRDI, whereas the VI that was least affected

by this parameter was WI.

5.4. Automatic thresholding by using Otsu’s method

Otsu’s automatic thresholding methodology was applied to the ExG index for every one of the
frames from the 30 m altitude flight at 35 DAS, which was the example in which the best accuracy
was achieved. The application of this methodology led to obtaining one threshold by frame, with
values ranging from 0.06 to 0.20 and a mean of 0.11. The use of its own threshold for VF
guantification in every frame resulted in a mean accuracy of 91.19%, slightly lower than the one
calculated using the best threshold from Table 1 (0.11) for ExG in all the frames (91.99%). The mean
value of the VI in every frame which is an easy way to obtain a threshold (Burgos-Artizzu et al. 2011;
Guijarro et al. 2011), was also tested for thresholding, however it led to an over-estimation of the VF
(data not shown). The SD achieved with Otsu’s method was 6.95, which indicated a spatial

consistency similar to the one obtained using 0.11 as threshold in all the frames (6.50).

5.5. VF mapping from the best Vls

Considering the mean accuracy along all the temporal series, its coefficient of variation, and
their spatial consistency, the best VIs were ExG and VEG. Therefore, they were studied more
exhaustively. Maps of accuracy by date at the 30 m (Figure 4) and 60 m flight altitudes (Figure 5)
were built and compared to the maps of the observed VF. The observed VF was also graphically
compared with the estimated VF from the 30 and 60 m flights. Prior to the comments on these

figures, some details must be clarified as follows:

1. The map size was not the same for all the dates because some images failed to be acquired
at 10 m flight altitude, and consequently, there were some small areas in that were
unfeasible to use to determine the observed VF.

2. The observed VF was lower on the last date than in the previous one, and this lower
vegetation density was even visually apparent in the images. According to the field crop data
recorded by the authors on the different flight dates, this could be due to the wheat and

weed plants being at the beginning of the tillering growth stage, in which the wheat stems
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become more vertical and show fewer surfaces in the aerial images (C. Fernandez-

Quintanilla, personal communication, May 16, 2013).
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Figure 4. Observed VF map. Accuracy maps for the best Vis, and graphics comparing the observed and

estimated VFs at the 30 m flight altitude.
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Figure 5. Observed VF map. Accuracy maps for the best Vis, and graphics comparing the observed and

estimated VFs at the 60 m flight altitude.

Accuracy maps were almost identical for both Vls at every flight date. The mapping of accuracy
revealed that there was a high proportion of the wheat field in which the accuracy was over 90%,
indicating the suitability of the studied VIs for VF quantification. This proportion was lower in imagery

acquired at the 60 m flight altitude, as suggested by the lower accuracy values shown in Table 2.
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Zones with lower accuracy were located at the same places at both 30 and 60 m, but they were

bigger at the higher altitude. Zones with lower accuracy were not consistent over time.

The graphical comparison of the observed and estimated VFs showed that most points were
near the 1:1 line, which indicated a high correlation among them. On the first dates, the point cloud
and the regression line did not cover the whole range of possible values because there were no
frames with high VF values. At 68 DAS, as it was mentioned above, VF reached the highest values;
therefore, there were no points in the graphic zone corresponding to lower VF values. The best fit
between the regression line and the 1:1 line was reached at the three last dates at the 30 m flight
altitude for ExG and VEG. At the 60 m flight altitude, the best fit was also reached at the three last

dates for the two studied VIS.

6. DISCUSSION

The discrimination of vegetation in narrow crop row fields during the early growth stages,
when the crop row width is 15 cm and the plant size is only of a few centimetres, requires the use of
images with a ultra-high spatial resolution because at least four pixels are required to detect the
smallest objects within an image (Hengl 2006). For this reason, distinguishing small seedlings has
been commonly undertaken by analyzing images captured with cameras or sensors mounted in on-
ground platforms (Burgos-Artizzu et al. 2010; Romeo et al. 2013). However, the use of remote
images captured with UAVs flying at low altitudes offer a new opportunity that needs to be
investigated in detail. This article shows the visible vegetation indices that best performed green
vegetation discrimination in a wheat field tested on six different dates throughout the earliest stages
of crop development and compared the results obtained in remote images captured at two different

flight altitudes.

Although most Vls tested showed the ability to discriminate vegetation, two indices (ExG and
VEG) had the highest classification accuracy independent of the image acquisition date. When
mapping spatially variable features in precision agriculture, such as VF or vegetation vigour, good
accuracy is needed. However, it is also required that this accuracy be homogenously distributed
across the studied crop. Mapping these variables would be useless if the mapping accuracy differed
from one zone to another. Therefore, the spatial consistency achieved for ExG and VEG makes them
adequate for precision agriculture applications in which vegetation quantification is needed. Yu et al.
(Yu et al. 2013) also reported that ExG was the VI with the best accuracy in their experiments in
maize, closely followed by ExGR and VEG. The excellent fitting between the regression line and the
1:1 line in figures 4 and 5 for the three last dates indicates that there is a low probability of under or

over-estimation of the vegetation fraction. The worse fitting achieved on the first dates could be due
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to the lack of points in the graphic region corresponding to high VF values, which causes the
accumulation of points in the opposite region of the graphic, while on the three last dates, there

were points distributed all over the graphic.

From an agronomic point of view, temporal consistency evaluated by the CV of the accuracy is
also of great importance because it allows overflying the crop just when the farmer wants to study
the crop without loss in the accuracy of the VF quantification. For example, if the farmer’s objective
is to detect vegetation as a step prior to designing an early site-specific weed treatment, the crop

images can be acquired a few days before the weed treatment is going to be applied.

Meyer and Neto (2008) reported that ExGR does not require a special threshold calculation in
images acquired at 1 m above the ground. Their results showed that plant pixel values were all
positive, and the remaining background pixels were all negative. However, for the UAV imagery
studied in this work, different threshold values lower than zero (i.e., negative) were needed to
classify vegetation pixels using EXGR. Those that involved a single threshold were not applicable in
our work for every VI, but rather the different dates and flight altitudes analysed made it necessary
to search for the best threshold in every case. Guijarro et al. (2011) and Burgos-Artizzu et al. (2011)
working with on-ground imagery in maize crops stated that Otsu’s thresholding method led to an
under-estimation of vegetation in their image analysis. However, Otsu’s thresholding method
achieved a satisfactory accuracy for the results in our work with remote imagery. Considering the
fact that different thresholds were needed for each VI and flight date, Otsu’s method could be used
to automate the threshold selection in future works where vegetation segmentation from UAV

images is required.

Of relevant interest is the definition of the optimum pixel size needed according to the size of
the plants to be discriminated. In remote sensing, the pixel size is directly proportional to the flight
altitude. In our experiment, classification results were moderately affected by the flight altitude, with
an average reduction of 3.95% in the classification results when flight altitudes increased from 30 m
(1.14 cm/pixel) to 60 m (2.28 cm/pixel). When the spatial resolution is very high, the plants in the
image are well delimited; however, when the spatial resolution is poorer, limits between plants and
soil are fuzzy, and consequently, there is usually a higher proportion of pixels including information
for both vegetation and bare soil. In our study, this mixed spectral information altered the VI values
in those pixels affecting the accuracy of the VF detection. Excluding the pixels with mixed spectral
information, the discrimination of pixels corresponding to bare soil or vegetation can be robustly
performed because they have two different dominant spectral signatures, green for plants and red
for soil (Guerrero et al. 2012). This spectral difference appears even in cases in which the leaf angle

and small scale soil properties disrupt the homogeneity of these classes.
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In a practical application of these VIs to VF quantification the selection of the flight altitude
will depend on several factors, not only on the accuracy of the quantification. Therefore, the loss of
about a 4% of accuracy could be assumed by the user if other important advantages are achieved by
flying at 60 m instead of flying at 30 m altitude, as described before by Torres-Sanchez et al. (2013).
For example, flying at 60 m allows the duplication of the area that can be overflown without
problems related with the UAV’s energy autonomy. This would reduce the number of images needed
to cover the whole studied crop, making it possible to map the VF in a shorter time. If the purpose for
VF mapping is ESSWM, the accuracy loss could be overcome by creating a buffer around the detected

weeds, which will reduce the chance of missing isolated weeds.

The study of VF in wheat fields in the early season could be used for the detection and
mapping of weeds for ESSWM. Crops do not cover the soil entirely in the first growth stages, so if
there are regions with low and high VF at early season in a crop field, it can be assumed that the
regions with a high percentage of vegetation are infested by weeds. In this stage, mapping weeds in
wheat using remote sensing presents much greater difficulties than in the case of the late-stage
season for three main reasons (Lépez-Granados 2011): 1) weeds are generally distributed in small
patches, which makes it necessary to work with remote images at very small pixel sizes, often on the
order of centimetres (Society 1996); 2) grass weeds and monocotyledonous crops (e.g., Avena spp. or
Lolium spp. in wheat) or broad-leaved weeds and many dicotyledonous crops (e.g., Chenopodium
spp. in sunflower) generally have similar reflectance properties early in the season, which decreases
the possibility of discriminating between vegetation classes using only spectral information; and 3)
soil background reflectance may interfere with detection (Thorp and Tian 2004). The usual first step
of the image processing is to separate plants (weeds and crop) from soil, and the second step is to
discriminate between crop and weed plants (Torres-Sanchez et al. 2013). However, the difficulty of
mapping early weeds in wheat fields (or other cereals sown in narrow crop rows) is related to the
very small distance between crop rows (usually no greater than 15 cm) and the quick growth of these
crops in the early growth stages, which cover the inter-row area in a few days, thus reducing the

likelihood of weed detection.

Research about the evaluation of factors affecting the application of UAV platforms in weed
science is still scarce. Some efforts are being made by the research community for the monitoring of
crop growth or weed infestation in early stages using UAV images, although currently most of these
investigations only show potential uses (Rasmussen et al. 2013) or are based on results with limited
validation (Samseemoung et al. 2012). The influence of the spatial and spectral resolution of the UAV
imagery in a multi-temporal study was evaluated in detail in our work. These factors were studied

deeply under field conditions, and the results were evaluated with a complete validation set of 96
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sampling frames in each of the six studied dates. Although sampling is a hard task in field conditions,
it is absolutely needed for an objective evaluation of the results; otherwise the results can only be
based on subjective interpretation. Moreover, investigations should also include all the operations
needed to generate a whole georeferenced image of the studied field, including the mission planning
and image mosaicking, because the advantage of UAV technology in comparison to other remote

platforms is the ability to use mosaicked images to map large fields (Torres-Sanchez et al. 2013).

7. CONCLUSIONS

Visible spectral indices derived from imagery acquired from an UAV equipped with a low cost
camera flying at low altitudes have shown the ability to discriminate vegetation in wheat fields in the
early season. Among the tested indices, the two most successful were ExG and VEG, with ExG being
the best for practical and farming applications due to its greater simplicity and its satisfactory mean
accuracy and SD accuracy at 30 and 60 m flight altitudes for any image acquisition date. Therefore,
the altitude and date to perform the flight depend on other parameters, such as the area to be flown

over or the objective of the image acquisition.

Otsu’s thresholding method can be applied to automatically determine the VI value that
performs an adequate discrimination of vegetation. It achieves good accuracy results and allows the
automation of the threshold selection, which is one of the key steps in vegetation discrimination

through Vis.

The methodology presented herein could be used for mosaicking a range of small to large
areas depending on the autonomy of the UAV. This advantage, together with the high temporal
resolution and the ultra-high spatial resolution obtained within a range of 2.47 to 0.74 cm, would
allow a greater extension of the detail in the information extracted from the images for weed patch
detection, which is the final objective of the research described herein. An accurate VF quantification
at very high spatial resolution, like that obtained in this study, can be useful in precision agriculture
for different crop monitoring proposes. In the field of ESSWM, the VF maps could be linked to weed

infestation, if it is assumed that a higher VF is related to the presence of weeds.

In conclusion, the most important achievement of this study was obtaining accurate VF
georreferenced maps in wheat fields at the seedling stage with very high spatial resolution for
further use in ESSWM using the ExG vegetation index obtained using an UAV and a low-cost camera.
As stated in this paper, the flight altitude had very little effect on the accuracy of the performance of
ExG, which is the most appropriate VI for mapping VF due to its high accuracy and its spatial and
temporal consistency. The VF quantification through UAV images opens the door to further

investigations, whose main objective should consist of the discrimination of the wheat row structure
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for further identification of weed and crop plants, because the position of each plant relative to the
crop rows might be the key feature used to distinguish between the weeds and crop plants. The
reasoning behind this objective would be that once crop rows are mapped, if there is vegetation
between them, this vegetation is most likely weed plants or weed patches, and thus, weeds could be

discriminated and mapped.
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CAPITULO 3

AN AUTOMATIC OBJECT-BASED METHOD
FOR OPTIMAL THRESHOLDING IN UAV
IMAGES: APPLICATION FOR VEGETATION
DETECTION IN HERBACEOUS CROPS

An automatic object-based method for optimal thresholding in UAV images: Application for
vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43-52.

doi:10.1016/j.compag.2015.03.019
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1. RESUMEN

En agricultura de precision, la deteccién de la vegetacidon en cultivos herbaceos en fase
temprana es un primer y crucial paso para afrontar objetivos como el conteo de plantas para la
monitorizacidon de la germinaciéon, o para la deteccion de malas hierbas en el ambito del manejo
localizado de malas hierbas en fase temprana. La muy alta resolucion espacial de las imdagenes
tomadas por vehiculos aéreos no tripulados (UAV por sus siglas en inglés), y las potentes
herramientas suministradas por el analisis de imagen orientado a objetos (OBIA por sus siglas en
inglés) son la clave en la consecucidn de la deteccidn de vegetacién en cultivos herbaceos en fase
temprana. El presente trabajo de investigaciéon desarrolla un innovador algoritmo OBIA de cdlculo de
umbrales basado en el método de Otsu, y estudia como los resultados del algoritmo son
influenciados por los diferentes parametros de segmentacion de la imagen (escala, forma vy
compacidad). Junto a la descripcidn general del procedimiento, éste fue aplicado a la deteccion de
vegetacion en imagenes remotamente capturadas por un UAV con dos sensores (una camara
convencional en el visible y una cdmara multiespectral) sobre campos de tres cultivos herbaceos
diferentes (maiz, girasol y trigo). Se analizé el funcionamiento del algoritmo OBIA para clasificar la
vegetacidn usando umbrales automaticamente calculados para dos indices de vegetacion: el ExG y el
NDVI. El parametro de escala de la segmentacidn afectd a los histogramas de los indices, lo que llevd
a cambios en el cdlculo del umbral éptimo para los indices de vegetacidén. Los otros parametros
involucrados en la segmentacidn (forma y compacidad) mostraron menor influencia en la precision
de la clasificacion. Aumentar el tamafo de los objetos conllevé un descenso en el error en la
clasificacidon hasta que se alcanzd un dptimo. Tras este valor éptimo, incrementar el tamafio de los

objetos provocd una menor precisién en la clasificacion.

2. ABSTRACT

In precision agriculture, detecting the vegetation in herbaceous crops in early season is a first
and crucial step prior to addressing further objectives such as counting plants for germination
monitoring, or detecting weeds for early season site specific weed management. The ultra-high
resolution of UAV images, and the powerful tools provided by the Object Based Image Analysis
(OBIA) are the key in achieving this objective. The present research work develops an innovative
thresholding OBIA algorithm based on the Otsu’s method, and studies how the results of this
algorithm are affected by the different segmentation parameters (scale, shape and compactness).
Along with the general description of the procedure, it was specifically applied for vegetation
detection in remotely-sensed images captured with two sensors (a conventional visible camera and a

multispectral camera) mounted on an unmanned aerial vehicle (UAV) and acquired over fields of
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three different herbaceous crops (maize, sunflower and wheat). The tests analyzed the performance
of the OBIA algorithm for classifying vegetation coverage as affected by different automatically
selected thresholds calculated in the images of two vegetation indices: the Excess Green (ExG) and
the Normalized Difference Vegetation Index (NDVI). The segmentation scale parameter affected the
vegetation index histograms, which led to changes in the automatic estimation of the optimal
threshold value for the vegetation indices. The other parameters involved in the segmentation
procedure (i.e., shape and compactness) showed minor influence on the classification accuracy.
Increasing the object size, the classification error diminished until an optimum was reached. After

this optimal value, increasing object size produced bigger errors.

3. INTRODUCTION

In precision agriculture, detecting the vegetation in herbaceous crops in early season is a first
and crucial step prior to addressing further objectives such as counting plants for germination
monitoring, or detecting weeds for early season site specific weed management. Discrimination of
the crop plants in their first stages of development needs images at very high spatial resolution,
often in the order of mm or very few cm (Hengl 2006; Lépez-Granados 2011). Also it is required that
the images can be taken at the optimal moment for the desired purpose. The most suitable tool for
accomplishing both requirements is the Unmanned Aerial Vehicle (UAV); UAVs flying at low altitudes
(maximum altitude allowed in the Spanish law for UAVs is 120 m) allow acquiring images with very
high spatial resolution (VHSR), and the low time required for launching an unmanned aerial mission
makes it possible to take images just at the required moment. Furthermore, it has been
demonstrated that vegetation indices (VI) calculated from UAV images are suitable for vegetation
detection in herbaceous crops (Torres-Sanchez et al. 2014). VIs are the product of arithmetic
operations performed with spectral information from the radiation reflected by the vegetation, and

these operations enhance the spectral difference between classes.

VHSR images represent a challenge for classification because, unlike in lower resolution
images, single pixels no longer capture the characteristics of the classification targets. Additionally,
these images show higher intra-class spectral variability (Aplin 2006; Woodcock and Strahler 1987).
For dealing with this spectral variability a new paradigm has emerged in recent years, the Object
Based Image Analysis (OBIA) (Blaschke 2010). OBIA works with groups of homogeneous and
contiguous pixels (called objects), which reduces the intra-class spectral variability caused by crown
textures, gaps, and shadows. The basic idea of this process is to first group spatially adjacent pixels
into spectrally homogeneous objects, and then conducting the classification using objects as the

minimum processing units. Several studies (Addink et al. 2007; Dragut et al. 2010; Karl and Maurer
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2010; Moffett and Gorelick 2013) have focused on the importance of segment size, and have noted
its influence on classification accuracy. The influence of size is related to the spectral heterogeneity
of the objects; higher object size causes an increase in internal heterogeneity of the objects because
they include more pixels. Therefore, it is important to study how the selection of the parameters
used for defining the segmentation process can affect vegetation detection in UAV images. As Hay et
al. (Hay et al. 2005) pointed out, ‘the real challenge is to define appropriate segmentation
parameters (typically based on spectral homogeneity, size, or both) for the varying sized, shaped, and
spatially distributed image-objects composing a scene, so that segments can be generated that

satisfy user requirements.’

For achieving accurate and automatic vegetation detection, along with the correct
segmentation parameters, it is necessary to find an automatic and efficient method to look for the VI
threshold value that sets the breakpoint between vegetation and bare soil. There are several
automatic methods for threshold calculation, among which Otsu’s (Otsu 1979) method is one of the
most utilized for agronomical issues (Guijarro et al. 2011; Meyer and Neto 2008). It assumes that the
image contains two classes of pixels (bare soil and vegetation when considering crop scenarios) and
then calculates the optimum threshold based on minimizing combined spread (intra-class variance).
It has the advantages of being easy to compute, stable, and not dependent on other a priori
information. Furthermore, automation of the thresholding by using Otsu’s algorithm improves the
transferability of the OBIA rule set to other images (Tiede et al. 2010) and it is useful to address the
spatial variability of spectral values in VHSR images. However, despite the good results of the Otsu’s

method in per-pixel analysis, it has not been described and tested in an OBIA environment.

Taking into account the information and problems presented above, the objectives of the
present study are to: 1) develop an automatic thresholding algorithm based on the Otsu’s method in
an object-based framework, 2) study the influence of object size and other segmentation parameters
in the classification outputs as affected by the type of image/camera/spatial resolution, and 3)
evaluate the relationship between spectral thresholding and the object size in remote images with
ultra-high spatial resolution. Finally, the resulting OBIA algorithm was tested for vegetation detection

in UAV images acquired over three different crops in early season with two different sensors.

4. MATERIALS AND METHODS

4.1. Description of the automatic thresholding OBIA algorithm

The rule set for automatic thresholding was developed by using the Cognition network

language of the software eCognition Developer 8.9. This language offers a multitude of options
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related to OBIA (Hay and Castilla 2008). It supports programming tasks such as branching, looping,

and the use of variables. A general scheme of the procedure is shown in the figure 1.

The first step in OBIA is the segmentation of the image. The image was segmented by using the
multiresolution segmentation algorithm (MRSA) implemented in eCognition. MRSA is a bottom-up
segmentation algorithm based on a pairwise region merging technique. It starts with one-pixel
objects and merges them through an iterative process that minimizes the internal weighted
heterogeneity of each object. In each iteration, objects are merged if the newly generated object
does not exceed a heterogeneity threshold defined by the following algorithm settings: 1) scale
parameter, 2) color/shape, and 3) smoothness/compactness. These factors can be controlled by the

user:

- Scale parameter, which limits the heterogeneity of the final objects.

- Color/shape weights, which control how much the segmentation is based on image spectral
(color) information vs object shape information.

- Smoothness/compactness weights, which control how much the object shape tends to be

spatially compact vs spectrally homogeneous (smooth) but less compact.

Once the image is segmented, the value of the discriminant feature that is going to be
thresholded is calculated and stored for each segment as an object variable. Then, the minimum
value of this variable is searched and stored as a scene variable for subsequent use as the initial
threshold to start the loop that leads to optimum threshold detection. Image objects with feature
values higher than the initial threshold (all of them at the beginning of the loop) are classified as
“foreground”, and the remaining objects are labelled as “background”. In the next step, the means of
the feature for “foreground” and “background” objects are calculated and stored as scene variables,
called “mean_f” and “mean_b”, respectively. Then, the weight of each class in the image is calculated
and stored as two other scene variables: Wf and Wb, for the “foreground” and “background” classes,

respectively:

(1)

(2)

Once all of these variables are stored, and following the indications of Otsu’s thresholding
method (Otsu 1979), the between-class variance of the image (BCV) is calculated and stored as

another scene variable called BCV:

(3)
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When BCV is calculated for the initial threshold, the image objects are unclassified, and the
initial threshold is incremented an amount named “increment”. The “increment” parameter is user-
configurable and its value will depend on the image histogram amplitude. All of the previous
calculations are repeated for the new threshold, and its BCV is compared to that from the initial
threshold. If the new BCV is higher than the previous one, its associated threshold is stored as “Opt
threshold” and all the process is repeated. This “if-then” loop is stopped when all the possible values
of the threshold are tested. The final threshold is the one that maximized the BCV, which had been

already stored as “Opt threshold”.

Image segmentation
(MRSA}

\l/ Ohjectvariable

Discriminant feature
calculation

Feature

If-thenloop

T Scene variables

v

Temporal threshold
(Th}

I

Image objects classification
accordingto thrashold

New threshold \|’ |
{Th+Incremant) | Meanfeature calculation I

I Class weights calculation l

l

Between class
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Isthe new
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previousona?

Yes

Loopsmeanwhile new
threshold < maximum value
of discriminant feature

Finalthreshold = Opt
threshaold

Figure 1. Flowchart of the automatic thresholding method.

4.2, Rule set application for vegetation detection

The rule set was applied to remotely-sensed images captured with two different sensors

mounted on a UAV and acquired over fields of three different winter and summer herbaceous crops
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(maize, sunflower and wheat). The plants were in their early growth stages that corresponds to the
principal stage 1 (leaf development) of the "Biologische Bundesanstalt, Bundessortenamt und
CHemische Industrie" (BBCH) extended scale (Meier 2001). Due to the differences on crop row
separation (17 cm, 70 cm and 75 cm for wheat, sunflower and maize, respectively) and plant
morphology (wheat and maize are monocotyledonous plants, and sunflower is a dicot), the images

were very different between them, forming a complete image set to test the algorithm.

The remote images were acquired at 30 m flight altitude with two different sensors mounted
separately in a quadrocopter UAV, model md4-1000 (microdrones GmbH, Siegen, Germany). The
flight altitude and moment were in agreement with that used in Pefia et al. (2013) for weed
detection in a maize field. One of the used sensors was a conventional visible camera, model
Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan), which acquires 12-megapixel images in
true Red-Green-Blue (RGB) colour with 8-bit radiometric resolution. The other sensor was a
multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA), composed
of six individual digital channels arranged in a 2x3 array, configured to acquire images with 8-bit
radiometric resolution. The camera has user configurable band pass filters (Andover Corporation,
Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths at B (450 nm), G (530
nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm). Both images were stored
in TIFF format. Detailed information about the configuration of the UAV flights and specifications of

the vehicle and the cameras can be found in Torres-Sanchez et al. (2013).

Variability in crops characteristics and in the spectral and spatial image resolutions allow us to
affirm that the thresholding OBIA algorithm was tested in six different scenarios. The selected images
covered an area of about 250 m” for each crop. These images were georeferenced by identifying ten
ground control points and measuring their coordinates with a GPS receiver. These coordinates were
then introduced into the images using ENVI software (ENVI 4.4., Research Systems Inc., Boulder, CO,
USA). Due to the technical characteristics of each sensor, the images had different spatial
resolutions; the pixel size was 1.14 cm for the conventional camera, and 1.62 cm for the

multispectral camera.

In these real scenarios, different MRSA parameters values were studied in order to quantify
their efficiency for discriminating vegetation objects. The assignment of these parameters is easily
controlled by the configuration panel of the MRSA in eCognition software. All the image bands were
assigned the same weight in the MRSA, whereas the segmentation parameters were evaluated in
two consecutive phases in order to study their influence on the thresholding method. Firstly, the
scale parameter was independently tested by fixing the shape parameter to 0.4 (thus giving a weight

of 0.6 to color) and giving an equal weight to the compactness and smoothness parameters (i.e., a
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value of 0.5 each one). The scale parameter is the most important setting for controlling object size
and, according to (Moffett and Gorelick 2013), it affects more strongly the segmentation results in
comparison to the minor impact of the remaining settings. In this first test, the scale values ranged
from 2 to 40 in increments of 2 units; these values generated a set of segmentations including a big
range of situations, from objects smaller than a crop plant, to objects including several plants and
even bare soil. A value of 1, which equates to a pixel-oriented analysis, was also tested. Secondly,
once the scale value that produced best classification accuracy was determined, shape/color and
compactness/smoothness influence on classification was also studied by fixing the scale parameter
to the best value obtained previously. In this second test, five values covering the whole range of
possible values (0.1, 0.3, 0.5, 0.7 and 0.9) were assigned to each parameter of the MRSA algorithm,

obtaining 25 new output segmentations.

Summarizing, twenty one different scale values were applied to the image dataset, which
generated 126 output segmentations. Then, the thresholding method was tested on the Excess
Green (ExG) images (visible-range camera) and on the Normalized Difference Vegetation Index
(NDVI) images (multispectral camera) with the objective of separating between vegetation and bare-
soil objects (Equations 4 and 5, respectively). Several previous studies have concluded that these
vegetation indices accentuate vegetation in the remotely-sensed images (Guijarro et al. 2011; Pefia
et al. 2013; Torres-Sanchez et al. 2014). A threshold increment of 0.01 was used in each algorithm

step due to the narrow range of the selected indices.

— (4)

— (5

4.3. Image analysis

4.3.1. Influence of scale parameter on segmentation and thresholding rule set

The influence of the scale parameter on the segmentation output was quantified, and
relationship between segmentation scale and averaged object size was plotted for each image. For
the analyzed images, histograms of the vegetation index values in the segmented images were
constructed for four different scale values in order to analyze how the size of the objects affects the
distribution of the values of the spectral indices. Additionally, for studying the influence of the size of
the objects in the automatic thresholding, a dot plot was made depicting the relationship between
the scale and the threshold calculated by the rule set. All of the graphics and data analysis were

performed using JIMP software (SAS, Cary, NC, USA).
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4.3.2. Evaluation of the OBIA algorithm for quantifying vegetation coverage

To evaluate the results of the discrimination between vegetation and bare soil attained by
each combination of segmentation settings (see section 2.2), a systematic sampling procedure was
conducted. In order to record real vegetation coverage, a vector shape file containing 30 square
sampling frames, 1x1 m in size, and regularly distributed in every image was created using ArcGis
software (ESRI, Redlands, CA, USA). The sampling area was representative of the vegetation observed
in the experimental fields. Vegetation was manually delineated in all the sampling frames of the

images in order to collect ground-truth data, i.e., the real vegetation coverage.

The classification outputs were evaluated by calculating the difference between the
percentage of the vegetation estimated by OBIA and the observed vegetation in the sampling frames
(Equation 6). Values lower than 0 indicated under-estimation of the vegetation coverage and values
higher than 0 indicated over-estimation. The classification error of the 30 frames was averaged for

every segmented image.

(6)

In order to show the efficiency of the presented algorithm, required time for thresholding was
measured for each one of the images, considering the scale parameter leading to the lower
classification error in each case. These computations were done using a standard computer with 16

GB of RAM, an Intel Core i5 (Intel, Santa Clara, CA, USA) processor and a graphic card of 1 GB.

5. RESULTS AND DISCUSSION

5.1. Object size as affected by the segmentation scale parameter

Figures 2 and 3 show the numerical and graphical variation, respectively, of the object size
according to different scale parameter values after the application of the MRSA segmentation
procedure. Object size was directly related to the scale parameter in all the cases, showing a
different degree of variation for each type of image and crop. As stated by Karl and Maurer (2010),
the scale parameter in the MRSA is used to control the final size of the objects (Baatz and Schaepe
2000), and the use of coarser scales leads to the generation of larger objects. However, as noted by
Moffet and Gorelick (2013) and Hay et al. (2005), it is not prescriptive of the final object size with

independence of the image.
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Figure 2. Effect of the scale parameter on the size (sz) of the objects generated by the MRSA for the analyzed

images.
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Figure 3. Segmentation outputs with different values of the segmentation scale parameter as affected by type
of image (conventional-color from the visible camera in the left and color-infrared from the multispectral
camera in the right) and type of crop. As a measure reference, the distance between crop rows was 70 cm in

sunflower, 75 cm in maize, and 17 cm in wheat.
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These differences among the images were due to the different spatial resolutions of both
sensors, and to the intrinsic agronomic characteristics of each studied crop. In the conventional color
images, the biggest object size ranged from 398 cm? in maize to 641 cm? in sunflower. The degree of
variation was higher in the multispectral images, in which the biggest object size ranged from 1,105
cm? in maize to the 2,142 cm” in wheat. This higher size range was because the lower resolution of
the multispectral camera is not enough for performing a good isolation of plants and bare soil,
leading to the creation of a big amount of pixels with mixed spectral values of both classes.
Therefore, the spectral homogeneity of the image was higher and the objects created by the MRSA,
which takes the homogeneity into account with the scale parameter, were bigger. Consequently, the
largest objects were generated in the multispectral image of wheat, where the small size of the

plants and the low resolution of the sensor, lead to a higher homogeneity in the image.
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Figure 4. Influence of the segmentation scale parameter on the threshold determined by the OBIA rule set for

each vegetation index.

5.2. Automatic threshold value as affected by the scale parameter

Figure 4 shows the influence of scale parameter on the threshold value calculated by the OBIA
algorithm. In the three crops, the optimal thresholds established by the rule set for ExG slightly
decreased when then scale parameter increased. This trend was more pronounced in maize (with
ExG values between 0.17 and 0.10), followed by sunflower (0.10 — 0.06) and wheat (0.14 - 0.11). This

downward trend might be caused by the fact that using low scale parameter values created small
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vegetation objects, and the ones located at the centre of the plants usually have high vegetation
index values, leading the thresholding method to select higher thresholds. When using higher scale
parameter values, these vegetation objects are merged with the ones that are located at the plant
borders and that have lower vegetation index values due to the mixture with bare soil objects.
Consequently, the vegetation objects that cover complete plants have lower ExG values and the

thresholding method selects lower thresholds.

In the case of the NDVI threshold values, a clear trend was not observed, and the values
oscillated around a threshold. This difference could be due to the higher spectral separability

between vegetation and bare soil achieved with NDVI.

5.3. Influence of the scale parameter on the vegetation index histograms

Figures 5 and 6 show the histograms of the values of the vegetation indices for the different
segmented images. The histograms were calculated from the two sensors, but only those from the

values of 10, 20, 30 and 40 along the scale are shown so as not to overwhelm the figures.

The range of the histograms showed a decreasing trend for both vegetation indices. This trend
was stronger for the ExG values, as it can be viewed in Table 1. Histogram range reductions for ExG
index were of 35%, 77% and 52% for maize, sunflower and wheat, respectively. For NDVI index, the
range reductions were 19%, 17% and 27%, respectively. Narrowing of the ranges was probably for
the same reason explaining the downward trend in ExG thresholds in relation to the scale parameter.
This is because, when using lower scale parameter values, there are small objects that include pixels
with extreme vegetation index values. However, when using higher scale parameter values, these
small objects are integrated with larger ones, and the extreme values are smoothed because they are
averaged with the other pixels inside the larger object. Consequently, at higher scales, extreme
values disappear from the histogram and its range decreases. The lower degree of range reduction
for the NDVI histograms could be related to the lower range of possible values that are allowed by its
formula (Equation 5); while ExG can take values from -2 to 2, NDVI only takes values between -1 and

1.
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Figure 6. Histograms of the values of the NDVI index in the images segmented by different scale parameters

from the multispectral camera.
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Table 1. Some descriptive statistics of the histograms (N: number of samples; Min: minimum; Max:

Maximum).
Crop Index Scale N Min Max Range
Maize ExG 10 76 609 -1.000 1.206 2.206
20 21972 -1.000 0.839 1.839
30 10 487 -1.000 0.638 1.638
40 6236 -0.807 0.638 1.444
NDVI 10 20 836 -0.274 0.748 1.022
20 6879 -0.189 0.685 0.874
30 3594 -0.185 0.646 0.832
40 2252 -0.185 0.646 0.832
Sunflower ExG 10 29 488 -0.897 0.887 1.783
20 8 600 -0.897 0.571 1.468
30 4121 -0.330 0.348 0.678
40 2456 -0.109 0.302 0.412
NDVI 10 9 466 -0.327 0.611 0.938
20 3053 -0.327 0.592 0.919
30 1661 -0.219 0.561 0.779
40 1079 -0.219 0.561 0.779
Wheat ExG 10 106 462 -0.673 1.158 1.831
20 32072 -0.372 0.818 1.191
30 15 682 -0.174 0.818 0.992
40 9336 -0.052 0.818 0.870
NDVI 10 25353 -0.271 0.477 0.748
20 6554 -0.261 0.477 0.738
30 2895 -0.159 0.453 0.613
40 1649 -0.159 0.390 0.549

Histogram shape was constant for the ExG values in all of the segmented images, except for
sunflower whose shape histogram varied slightly. By contrast, the increases in the scale parameter
changed the NDVI histograms from a unimodal distribution to a multimodal distribution for maize
and sunflower, representing the two classes in the image: bare soil for the peak with the lower NDVI
value and vegetation for the peak with the higher value. This hypothesis is reinforced because the
threshold calculated by the algorithm in these images is located near the valley between the two
peaks of the histogram corresponding to the two classes in the image. The shift in the histogram did
not appear for wheat because the image objects covered vegetation and bare soil and therefore their
spectral values were mixed for the studied scale parameter values. Hay et al. (2005) detected a
similar trend in the analysis of aerial forest images. In their work, the histograms developed a
multimodal distribution whose peaks corresponded to the dominant object classes in the image. As
they stated, this type of histogram information is only available when using OBIA. The shift in

histogram shape affected the NDVI values but not the ExG values. This could be due to the higher
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spectral separability between the vegetation and bare soil that can be achieved using information
from the NIR zone of the electromagnetic spectrum, in which live vegetation exhibits a very
characteristic response. ExG histograms for sunflower did not reach a multimodal distribution, but it
can be observed that they show a tail for the larger scale parameter values. Probably, this is due to
the fact that sunflower plants (or group of plants) are more easily isolated from their environment
because it is a dicot crop and has broad stalked leaves and more compact shape compared with
monocots. That is, shape of sunflower plants is nearly similar to a circle, whereas maize plants have
elongate stalkless leaves and present a shape similar to a star with peaks, so the ExG values are more

aggregated in a closed area.

5.4. Vegetation detection

5.4.1. Classification accuracy as affected by segmentation scale

Differences in classification error with respect to object size, and consequently, to the scale
parameter, for the three crops are presented in Figure 7. Object size influenced the quality of the
classification in all cases. For ExG in all crops, small objects (i.e., small scale parameter values) led to
an under-estimation of the vegetation. This under-estimation tended to diminish as the scale
parameter increased, and the classification error was near zero for objects whose sizes were nearly
the average size of the plants in the image. The best scale values for the conventional color image
were 20 (96 cm?), 18 (278 cm?) and 4 (11 cm?) for maize, sunflower and wheat, respectively
(classification outputs for these values can be viewed in figure 8). Over-estimation of the vegetation
occurred for the larger object sizes. Changes in the classification error with scale parameter value
showed a similar trend to that described in other works (Addink et al. 2007; Karl et al. 2010; Kim et
al. 2011); as the object size increased, the error decreased until an optimum was reached, after
which increasing the object size resulted in greater errors. This is indicative of the existence of an
optimum segmentation size related to classification quality. Kim et al. (2011) stated that the average

size of image objects is similar to that of the targeted ground features in an optimal segmentation.

For the color-infrared image the best scale parameter values were 36 (331 cm?), 12 (176 cm?),
and 1 (2 cm?) for maize, sunflower and wheat, respectively (classification outputs for these values
can be viewed in figure 8). There was not a clear trend relating object size and classification error for
all the crops. This discrepancy with the results from the visible-range camera could be due to the
lower spatial resolution of the multispectral camera, which would necessitate working with bigger
objects. In maize the classification error diminished with the growing of the object size, reaching a
value near to zero when the generated segments comprised larger vegetation areas, such as parts of
crop rows or weed patches. The classification error was very low for all object sizes in sunflower, with

optimal values close to a scale parameter value of 12 (176 cm?); this is because the compactness of
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the sunflower plants, and the homogeneity of the NDVI values inside them led in all cases to
segmentations in which the resulting objects almost did not cover bare soil areas. In wheat, the
lower classification error for the multispectral image was achieved for the scale parameter of 1,
which is equal to a pixel based analysis; this is due to the small size of the wheat plants, whose pixels

can be only isolated in the multispectral resolution with objects of one pixel size.
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Figure 7. Classification error (and its associated standard error) as affected by object size and type of image. 1)
Conventional-color image from the visible camera, at 1.14 cm/pixel, and 2) color-infrared image from the

multispectral camera, at 1.62 cm/pixel.
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Figure 8. Classification outputs for the best scale parameter for each crop and sensor.

The time spent in thresholding each image for the scale parameter leading to the lower

classification error was under one second in most cases, and in four of them was less than half
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second (table 2). This processing speed makes the algorithm suitable for implementation in more
complex classification algorithms needing vegetation detection as an intermediate step, such as the
ones developed for weed detection in herbaceous crops in early season (Pefa et al. 2013). The only
exception for these low processing times was wheat in the color-infrared image, because the
selected scale parameter generated small objects, leading the algorithm to consider a higher amount
of objects in its looping process and, consequently, to consume more time in the thresholding

operation.

Table 2. Time spent by the thresholding algorithm in each crop. It was measured in each case for the scale

parameter leading to the lower classification error.

Maize Sunflower Wheat

Conventional color Scale parameter 20 18 4
Thresholding time (s) 0.795 0.266 0.250

Color-infrared Scale parameter 36 12 1
Thresholding time (s) 0.14 0.171 33.665

5.4.2. Classification accuracy as affected by segmentation shape and compactness parameters

The best scale values for each crop and image, detailed in the previous section, were used to
study the influence of shape and compactness parameters on classification accuracy. Figure 8 shows
the classification error for the different combinations of values of shape and compactness. It can be
seen that the errors were very similar for all the combinations. Bigger errors appeared only when the
shape parameter was 0.9, especially for the color-infrared image in maize; this was because this
value generated larger objects covering bare soil and vegetation, what affected their vegetation
indices values because of the spectral values mixing and, consequently, led the thresholding
algorithm to select an incorrect threshold. For the scale parameter studied, all the combinations of
shape and compactness performed were able to delineate the plants. However, when the shape
parameter was 0.9, there were objects covering bare soil and vegetation areas. These results confirm
previous works from Moffett and Gorelick (2013), these authors stated that scale parameter affects
more strongly the segmentation results in comparison to the minor relevance of shape and

compactness.
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Figure 9. Classification error (and its associated standard error) as affected by shape and

parameters and type of image.

6. CONCLUSIONS

doip
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Automatic thresholding of spectral indices for vegetation classification in UAV images in an

OBIA environment has been achieved by the development of an automatic and efficient algorithm. It

has demonstrated its ability to automatically select a threshold from gray-level histograms

independent of whether they were unimodal or multimodal histograms. Furthermore, it has the

following advantages:

- The rule set stably and automatically selects a threshold, allowing unsupervised

classification. This is essential for achieving complete automation of OBIA algorithms.

- It is a fast method (below one second in most cases) that does not require complicated

calculations. It depends only on the mean and weight of the two classes used iteratively

along the loop integrated in the rule set.

- The method does not depend on the classes included in the analyzed image. It can be used in

a wide range of situations; the only adaptation needed is to change the discriminant feature

and the “increment” parameter.

- Using this rule set in OBIA algorithms that have been developed for specific areas increases

their transferability. This is because the elimination of absolute thresholds makes possible

the application of the algorithms to images with different spectral values.

The influence of the scale parameter on the accuracy of the image classification outputs was

demonstrated. It affected the histograms of the vegetation indices for the segmented images and it

consequently led to changes in the threshold selected by the rule set, especially when working with

Jorge Torres Sanchez
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the ExG index. Increasing the object size, diminished the classification error until an optimum was
reached, after which increasing the object size resulted in greater errors. Shape and compactness

parameters of the MRSA showed little influence over the classification accuracy.

When tested with ultra-high resolution images taken from an UAV over crop fields, the rule set
presented here achieved accurate vegetation classification results, with errors between 0 and 10%.
Consequently, as part of a broader research program to generate early season site specific weed
treatments, the algorithm is currently being used for vegetation detection in the development of a

weed discrimination rule set in herbaceous crops.
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1. RESUMEN

El uso de imagenes remotas capturadas usando vehiculos aéreos no tripulados (UAV por sus
siglas en inglés) tiene un gran potencial para el disefio de tratamientos localizados de malas hierbas
en fase temprana, tarea que no habia sido posible anteriormente con imagenes tomadas desde
aviones o satélites. Con el objetivo de crear un mapa de malas hierbas en un campo experimental de
maiz en Espafia, se ha desarrollado un procedimiento de analisis de imagen orientado a objetos
(OBIA por sus siglas en inglés) robusto y totalmente automatico, para esto se ha utilizado una serie
de imagenes tomadas con un sensor multiespectral de seis bandas (rango visible e infrarrojo) a bordo
de un UAV. El procedimiento OBIA combina varias caracteristicas contextuales, y jerdrquicas basadas
en objetos, y consta de tres fases consecutivas: 1) clasificacion de las lineas de cultivo mediante la
aplicacion de una aproximaciéon dindmica y auto-adaptativa de clasificacién, 2) discriminacién de
cultivo y malas hierbas en base a su posicidén relativa con referencia a las lineas de cultivo, y 3)
generacion de un mapa de infestacidn de malas hierbas con una estructura de cuadricula. La
estimacion de la cobertura de malas hierbas a partir del andlisis de imagen produjo resultados
satisfactorios. La relacion entre densidades de malas hierbas estimadas y reales tuvo un coeficiente
de correlacién R2=0,89 y un error medio cuadratico de 0,02. Un mapa con tres categorias de
cobertura de malas hierbas fue producido con una precisién general del 86%. En el campo
experimental, el area libre de malas hierbas era de un 23%, y el area con baja cobertura de malas
hierbas (<5%) fue del 47%, lo que implica un gran potencial para la reduccién de la aplicacién de
herbicidas u otros métodos de control de malas hierbas. El procedimiento OBIA calcula multiples
datos y estadisticos derivados del resultado de la clasificacién, lo que permite el calculo de los

requerimientos de herbicida y la estimacidn del coste de las operaciones de control de malas hierbas.

2. ABSTRACT

The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous
potential for designing detailed site-specific weed control treatments in early post-emergence, which
have not possible previously with conventional airborne or satellite images. A robust and entirely
automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images
using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of
generating a weed map in an experimental maize field in Spain. The OBIA procedure combines
several contextual, hierarchical and object-based features and consists of three consecutive phases:
1) classification of crop rows by application of a dynamic and auto-adaptive classification approach,
2) discrimination of crops and weeds on the basis of their relative positions with reference to the

crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed
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coverage from the image analysis yielded satisfactory results. The relationship of estimated versus
observed weed densities had a coefficient of determination of r’=0.89 and a root mean square error
of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In
the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5%
weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed
operations. The OBIA procedure computes multiple data and statistics derived from the classification
outputs, which permits calculation of herbicide requirements and estimation of the overall cost of

weed management operations in advance.

3. INTRODUCTION

Many agricultural crops require the use of herbicides as essential tools for maintaining the
quality and quantity of crop production. Currently, the cost of herbicides accounts for approximately
40% of the cost of all the chemicals applied to agricultural land in Europe (ECPA 2010). Associated
environmental and economic concerns have led to the creation of European legislation on the
sustainable use of pesticides (Williams 2012). This legislation includes guidelines for the reduction in
applications and the utilization of adequate doses based on the degree of weed infestation. Both
components are integrated in the agronomical basis of the precision agriculture principles and
especially of site-specific weed management (SSWM). This consists of the application of customized
control treatments, mainly herbicides, only where weeds are located within the crop field in order to
use herbicides and doses according to weed coverage (Srinivasan 2006). SSWM typically uses new
technologies to collect and process spatial information on the crop field. Remote sensing technology
can play a role here as an efficient and repeatable method to obtain crop field information related to

weed infestation.

The analysis of remote images captured with aircraft and satellite platforms has resulted in
numerous examples of weed mapping in late growth stages (de Castro et al. 2012; Koger et al. 2003;
Pefia-Barragan et al. 2007), although in many weed—crop systems, the optimal treatment time is
early in the growth season when weeds and crops are in their seedling growth stages (Lopez-
Granados 2011). However, discriminating small seedlings with airborne and satellite imagery is
problematic due to the insufficient spatial resolution of these images. This difficulty might be now
overcome using the new generation of remote platforms known as unmanned aerial vehicles (UAV)
or unmanned aerial systems (UAS). UAVs can operate at low altitudes and capture images at very
high spatial resolutions (a few cm), which is not feasible with conventional remote platforms.
Moreover, UAVs can work on demand with great flexibility at critical moments, depending on the

agronomic goals involved. This is crucial for detecting small weed and crop plants at early stages in
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the majority of fields. UAV technology has been adapted and utilized by diverse groups interested in
agricultural investigation (Zhang and Kovacs 2012), and a few studies have reported the use of UAVs
in assessing weed distribution or invasion of plants in rangeland monitoring (Goktogan et al. 2010;

Laliberte et al. 2010).

Along with spatial and temporal resolution requirements, spectral similarity between weed
and crop plants, which occurs mainly in the early part of the growth season, makes discrimination
between the two difficult (Lopez-Granados 2011; Stafford 2000). This is an important limitation in
the application of image analysis methods based on pixel information only. To address this limitation,
a powerful procedure, such as object-based image analysis (OBIA) might be the only way to
distinguish between weed and crop. The OBIA methodology first identifies spatially and spectrally
homogenous units (objects) created by grouping adjacent pixels according to a procedure known as
segmentation and next it combines spectral, contextual and morphological information to drastically
improve image classification results (Blaschke 2010). In this process, the definition of the row
structure formed by the crop is essential for further identification of plants (crop and weeds) because
the position of each plant relative to the rows might be the key feature used to distinguish among

the weeds and crop plants (Burgos-Artizzu et al. 2009).

In the context of SSWM, the ultimate objective of detecting weed patches is to generate
efficient decision support system data that can be used with specific spraying machinery (Shaw
2005). For this purpose, several applications have been developed to delineate a restricted number
of management zones based on crop status (Fridgen et al. 2004) or weed density thresholds in
mature wheat fields (Gémez-Candén et al. 2012). However, the development of robust and
automatic procedures for weed data acquisition, image analysis and delineation of weed cover zones
is still challenging, even more so in early growth stages (Lépez-Granados 2011). This research
involves the whole process: acquisition of very-high-spatial-resolution remote images with a UAV,
image analysis using object-based methods, and the ultimate objective of generating weed maps at
early stages for in-season site-specific herbicide treatment. To achieve this objective, we developed
an OBIA procedure consisting of three main phases: 1) automatic definition of crop rows within a
maize field accomplished by combining spectral and contextual features in a customized looping rule
set algorithm, 2) discrimination of weed seedlings and crop plants based on their relative positions,
and 3) automatic generation of a weed coverage map in a grid framework adapted to the

specification required by the herbicide spraying machinery.
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4. MATERIALS AND METHODS

4.1. Study site

Remote images were taken on May 5™, 2011 on a maize field located in Arganda del Rey
(Madrid, Spain, coordinates 40.320 N, 3.477 W, datum WGS84), just when post-emergence herbicide
or other control techniques are recommended. The flights were authorized by a written agreement
between the farm owners and our research group. The maize field was naturally infested with
Amaranthus blitoides (broad-leaved weed) and Sorghum halepense (grass weed). The maize was at
the stage of 4—6 leaves unfolded, and the weed plants were similar in size or in some cases smaller
than the maize plants (Figure 1). Several visits to the field were conducted for monitoring of crop
growth and weed emergence and finally to select the best moment to take the set of remote images.
An experimental plot of 140x100 m was delimited within the crop field to perform the flights. The

coordinates of each corner of the flight area were collected with a global positioning system (GPS) for

use in planning the flight route.

Figure 1. Aerial view of the experimental field (a), showing the centers of the UAV aerial images in blue and the
sampling points in black (see section 2.4), and in-field photograph of the study site (b), showing the maize rows

and some patches of weed infestation.

4.2.  UAV flights and remote images

A model md4-1000 quadrocopter UAV (microdrones GmbH, Siegen, Germany) with vertical
take-off and landing capabilities was used to collect the remote images (Figure 2a). This UAV can fly
either by remote control or autonomously with the aid of its GPS receiver and its waypoint
navigation system. It can carry any sensor that weighs less than 1.25 kg mounted under its belly. The
images were collected with a Tetracam mini-MCA-6 camera (Tetracam Inc., Chatsworth, CA, USA),

which is a lightweight (700 g) multispectral sensor with six individual digital channels arranged in a

122 Tesis doctoral



Weed mapping in early-season maize fields

2x3 array. Each channel has a focal length of 9.6 mm and a 1.3-megapixel (1,280 x 1,024 pixels)
CMOS sensor that stores images on a compact flash card. The camera has user-configurable band-
pass filters (Andover Corporation, Salem, NH, USA) of 10-nm full width at half-maximum and center
wavelengths of 530, 550, 570 (the green region of the electromagnetic spectrum), 670 (the red
region), 700 and 800 nm (the near-infrared region). The software PixelWrench2 was supplied with
the camera to provide full camera control and image management, including correction of the
vignette effect, alignment of RAW image sets and building of multi-band TIFs (Figure 2b), as

explained in (Torres-Sanchez et al. 2013).

A

Figure 2. Unmanned quadrotor-type aerial vehicle flying over the crop field (a), and aerial image (color—infrared
composition) obtained by the UAV at an altitude of 30 m (b), showing the maize rows, some weed patches and

the Spectralon® panel.

The flight altitude was 30 m above ground level, yielding 20 images of 2-cm spatial resolution
to cover the whole experimental field. During the UAV flights, a barium sulphate standard
Spectralon® panel (Labsphere Inc., North Sutton, NH, USA) 1 x 1 m in size was placed in the middle of
the field to calibrate the spectral data (Figure 2b). Digital images captured by each camera channel
were spectrally corrected by applying an empirical linear relationship (Hunt, Jr. et al. 2010). Equation
coefficients were derived by fitting the digital numbers of the MCA imagery located in the spectralon

panel to the spectralon ground values.

4.3. Weed mapping by object-based image analysis (OBIA)

The spectral characteristics and general appearance of crop and weed plants are highly similar
in the early season (Lopez-Granados 2011; Stafford 2000) and are even more pronounced in remote
images (Torres-Sanchez et al. 2013). Therefore, the effectiveness of weed discrimination might be
increased by taking advantage of the relative position of every plant with reference to the crop row

structure (Burgos-Artizzu et al. 2009). This information can be included in the classification procedure
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using the OBIA methodology, allowing the combination of spectral, contextual and morphological
information, among other features, of the objects created using a procedure known as segmentation
(Pefia-Barragan et al. 2011). The commercial software eCognition Developer 8 (Trimble GeoSpatial,
Munich, Germany) was used to analyze the UAV images and develop an OBIA procedure. The rule set
algorithm for weed mapping ran automatically and consisted of three consecutive phases: 1)
classification of crop rows, 2) discrimination between crop plants and weeds based on their relative

positions, and 3) generation of a weed infestation map in a grid structure. A flowchart of the process

is shown in figure 3.
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Figure 3. Flowchart of the OBIA procedure for classification of crop rows and weeds and generation of a weed
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4.3.1. Crop row classification

A dynamic and auto-adaptive classification approach was used to define the crop row
structure, by mean of a combination of several object-based features that characterize a set of
regular and quasi-equidistant lines of plants. In this process, the UAV images were segmented into
homogeneous multi-pixel objects using the multiresolution algorithm (Baatz and Schaepe 2000).
Segmentation is a bottom-up region-merging process in which the image is subdivided into
homogeneous objects on the basis of several parameters (band weights, scale, color, shape,
smoothness and compactness) defined by the operator. Two levels of segmentation were
independently used throughout the procedure (Figure 4a): 1) a level at a scale of 140, to define the
main orientation of the crop rows, and 2) a level at a scale of 10, to generate smaller objects for crop
and weed discrimination. In both cases, the values of the other parameters involved in the

segmentation were 0.9, 0.1, 0.5 and 0.5 for color, shape, smoothness and compactness, respectively.

After segmentation, the normalized difference vegetation index (NDVI; (Rouse et al. 1974))
was used to classify objects of vegetation (Figure 4b) as being those with NDVI values greater than
0.20. NDVI was selected as the best index for use in performing this classification, compared to other
vegetation indices (Torres-Sanchez et al. 2013). A customized merging operation was then performed
to create lengthwise vegetation objects, following the shape of a crop row. In this operation, two
candidate vegetation objects were merged only if the length/width ratio of the target object
increased after the merging. Next, the object that was largest in size and with orientation close to the
row orientation was classified as a seed object belonging to a crop row. Lastly, the seed object grew
in both directions, following the row orientation, and a looping merging process was performed until
all the crop rows reached the limits of the parcel (Figure 4c). Every phase of the crop row

classification process is described in detail in (Pefa-Barragdn et al. 2012).

4.3.2. Discrimination of crop and weeds

After classifying all the crop rows within an image, the algorithm generated a buffer zone along
the longitudinal axis of each row by applying a chessboard segmentation process at an upper level of
hierarchy. Two or more levels of segmentation form a hierarchical structure in the OBIA paradigm, in
which super-objects belong to the upper level and include one or more sub-objects that belong to
the lower level. In this case, the width of the buffer zone (upper hierarchical level) was defined by the
average size of the vegetation objects in contact with the row structure. Next, the vegetation sub-
objects located entirely below the buffer zone (lower hierarchical level) were classified as crop
plants, and others were classified as weeds (Figure 4d). A more complex decision rule was made in

the case of sub-objects located below the edge of the buffer zone. In this case, the sub-objects in
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contact with or very close to other weeds were classified as weeds because aggregation among weed

plants, i.e., weed patches, was generally observed (Heijting et al. 2007).
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Figure 4. Partial view of the outputs of the OBIA procedure at each step: a) segmentation outputs at scales of
140 (in blue) and 10 (in black), used to calculate row orientation and define vegetation objects, respectively; b)
classification of objects of vegetation and bare soil ; c) definition of the crop row structure (in black); d)
classified image with crop, weeds and bare soil; e) grid framework of the inter-row area; f) weed coverage map

showing three levels of infestation (low, moderate and high), crop rows and weed-free zones.
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4.3.3. Weed coverage mapping

After weed—crop classification, the algorithm built a grid framework of the inter-row area by
applying two consecutive processes: 1) copying the existing inter-row object level to an upper
position, and 2) chessboard segmentation of this upper level and generation of grids of user-
adjustable size (Figure 4e). For example, in this investigation, the grid length used was 1 m and the
grid width used was the inter-row distance (0.7 m on average). Therefore, a new hierarchical
structure was generated in the inter-row area between the grid super-objects (upper level) and the
weed and bare-soil sub-objects (lower level). Next, an estimate of the weed coverage (% of weeds)
was automatically calculated from the ratio of weed pixels to total pixels per grid (Burgos-Artizzu et
al. 2009; Donald 2006). This calculation was based on the hierarchical relationship between grid
super-objects and weed-infested sub-objects. Lastly, weed cover was also mapped on the basis of a
number of user-adjustable categories defined by infestation thresholds. For example, in this
investigation, the weed map identified both weed-free zones and weed-infested zones, which were
categorized at three different levels of infestation, as follows: 1) low (<5% weed coverage), 2)
moderate (5-20% weed coverage) and 3) high (>20% weed coverage) (Figure 4f). Both the grid
dimensions and the number and thresholds of the weed infestation categories can be customized on

the basis of cropping patterns and the specifications required by the herbicide spraying machinery.

4.4, The evaluation of the methodology

The rule set algorithm was created and configured using two of the aerial images and was
tested using the rest of the images. To evaluate the results of the algorithm, a systematic on-ground
sampling procedure was conducted during the UAV flight. The sampling consisted of placing 28
square white frames, 1x1 m in size, throughout the studied surface (Figure 5). The distribution of the
samples was representative of the distribution of weed coverage levels in the experimental field.
Weed mapping is considered a more complicated task in cases of low and moderate levels of weed
infestation (greater confusion is possible due to the presence of bare soil) than in cases of high levels
of weed infestation (at which bare soil has a minor influence) or weed-free zones (with no influence
of weeds). For this reason, the sampling frames were primarily located in zones with low and
moderate weed coverage levels rather than in weed-free zones or in zones with high or very high

infestation levels.
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Figure 5. On-ground photographs (1) and UAV images (2) of the 1x1-m frames used in the ground-truth

sampling of three different categories of weed coverage: a) low, b) moderate, and c) high.

Every frame was georeferenced with a GPS and photographed to compare on-ground weed
infestation (observed weed coverage) with the outputs of the image classification process (estimated
weed coverage). Weed coverage in the on-ground photographs was extracted through the
application of a specific greenness index that accentuates the green color of the vegetation (Romeo
et al. 2013). After a visual assessment of several indices, the excess green index (Torres-Sanchez et al.
2013; Woebbecke et al. 1995) was selected for use and applied to the photographs. Next, pixels with
values greater than zero were classified as vegetation (weed and crop), and finally, weed pixels were

isolated by manually masking crop row areas.

The fractions of weed area in the on-ground and aerial images were converted to percentages
of the total area within every frame and were compared using a 1:1 line, which should have a
correspondence of 1 in an ideal situation. This correspondence was evaluated by calculating the
slope, the intercept and the coefficient of determination (R?) of a linear regression model. The root
mean square error (RMSE) was also calculated as an additional measure of the overall error of the

estimations.

The accuracy of the classified images was also quantified by calculating the confusion matrix
between weed mapping outputs and weed coverage in all the sampling frames grouped in the three
categories (low, moderate and high weed densities) previously defined. The confusion matrix
quantifies the overall accuracy (OA) of the classification, as well as its omission (OE) and commission

(CE) errors in each category (Congalton 1991).
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5. RESULTS AND DISCUSSION

5.1. Weed map information provided by the OBIA procedure

An advantage of the OBIA procedure, compared to traditional pixel-based methodologies, is its
ability to compute multiple data and statistics derived from the image analysis and classification.
Moreover, this information can be exported in several file formats, e.g., vector, image, ASCII, tables,
etc. The algorithm developed in this study can compute and export information at several levels,

depending on its position in the segmentation hierarchy, as described below.

5.1.1. Whole field: upper segmentation level

Global information for the crop field, including field dimensions, number of crop rows, crop
row orientation, average crop row separation, weed-free area and total area of each weed coverage
category, was computed at the upper segmentation level. A vector shapefile with the limits of the
field and a georeferenced image file of the gridded weed map were also produced, as well as other
image files of intermediate classification outputs, if required. The global data computed for the
experimental field are given in table 1. The experimental field occupied 1.4 ha and had 142 crop rows
approximately 140 m in length, separated from each other by 0.70 m on average. The area free of
weeds was 23%, and the area with low weed coverage (<5% of weeds) was 47%, indicating a high

potential for reducing herbicide applications or other weed operations in this field.

Table 1. Global information on the whole experimental field computed according to the OBIA procedure at the

upper segmentation level.

Global Feature Value
Field features
Area (m?) 14,000
Perimeter length (m) 480
Maximum length (m) 140
Minimum length (m) 100
Lat coordinate of the field center (°) 40.320N
Lon coordinate of the field center (°) 3.477 W
Crop row features
Number of rows (n) 142
Average row orientation (°) 32
Maximum row length (m) 140
Minimum row length (m) 140
Average distance between rows (m) 0.70
Weed map features
Number of grid units (n) 19,880
Grid units free of weeds (n) 4,572
Grid units with weeds (n) 15,308
Area of grid units free of weeds (m> %) 3,258 (23%)
Area of grid units with weeds (m>,%) 10,742 (77%)
Area with low weed coverage (<5%) (m>,%) 6,618 (47%)
Area with moderate weed coverage (5-20%) (m>%) 3,230 (23%)
Area with high weed coverage (>20%) (m’,%) 894 (7%)

Jorge Torres Sanchez 129



Capitulo 4

5.1.2. Crop row structure: Intermediate segmentation level

Detailed information on each inter-row unit, including the identification number
(automatically assigned), the geographic coordinates of the row extremes, the length and width, the
percentage of area free of weeds, and the percentage of each category of weed coverage
considered, was produced at the intermediate segmentation level. An example of crop row data
computed for the experimental field is given in table 2. Among the rows indicated, weeds were found
in 100% of the grid units of row 141, which had 10% weed infestation. In contrast, row 1 only had 3%

weed infestation and 57% of its grid units were free of weeds.

Table 2. Inter-row information for the experimental field computed by the OBIA procedure at the intermediate

segmentation level.

Start End Size (m) # Weed-infested grid units
Row Lat Lon Lat Lon Low Moderate High
Length Width  Weed-free Total
ID (40°N) (3°w) (40°N) (3°w) gt (<5%) (5-20%) (>20%)
19’ 28’ 19’ 28’
1 140 0.70 57 46 7 0 3
13.17” 38.93” 17.00” 35.72"
19° 28’ 19° 28’
2 140 0.70 29 50 14 7 6
13.15” 38.90” 16.97” 35.69”
19° 28’ 19’ 28’
3 140 0.68 21 39 29 11 8
13.14” 38.86" 16.95” 35.65"
19’ 28’ 19’ 28’
141 ” 140 0.75 0 43 53 4 10
11.55 35.29” 15.43” 32.03”
19° 28’ 19° 28’
142 ” " " " 140 0.69 50 27 15 8 6
11.54 35.26 15.45 32.06

5.1.3. Weed infestation in grid units: lower segmentation level

Detailed information on each grid unit, including the identification number, geographic
coordinates, dimensions, relative position within the crop row, distance to the start and the end of
the crop row, weed coverage percentage and weed coverage category, was produced at the lower
segmentation level. A list of the data computed in every grid unit of the experimental field is given in
table 3. Among the grid units indicated, the highest weed coverage was measured in grid unit 3

(22%), located two meters from the beginning of row 1. In contrast, grid unit 1 was free of weeds.

The OBIA procedure generated a geo-referenced weed map that can be converted into a
prescription herbicide application map and can then be transferred to machinery embedded with
technologies for practical application of site-specific weed control strategies. The information
provided in tables 1, 2 and 3 can be utilized by decision-making systems to calculate herbicide
requirements or other weed operations in the field for the purposes of optimizing weeding
machinery path planning and estimating the overall cost of weed management operations in advance

(Pedersen et al. 2006). Moreover, multi-temporal analysis of abundance and distribution of weeds
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within the same field is very helpful in studies of weed population dynamics and weed—crop

interactions (e.g., crop yield losses).

Table 3. Grid information for the experimental field computed by the OBIA procedure at the lower segmentation

level.
Coordinates Dimensions (m) Position in row Weed coverage
Grid ID  Lat(40°N) Lon(3°W) Length Width RowID Distance to Distance to % of Weeds Weed category
start (m) end (m)

1 19713.17” 28 38.93” 1 0.70 1 0 140 0 Weed-free

2 19°13.20” 28’ 38.90” 1 0.70 1 1 139 3 Low

3 197 13.23” 28 38.87” 1 0.70 1 2 138 22 High
19879 19°15.40” 28 32.05” 1 0.69 140 139 1 7 Moderate
19880 19 11.54” 28° 35.26” 1 0.69 140 140 0 4 Low

5.2. The evaluation of the weed map

The algorithm developed in this study identified and counted the rows in the training images
with 100% accuracy and only had minor errors in classifying short rows located in the corners of
some testing images. The definition of the longitudinal edge of the crop rows was strongly affected
by the presence of weed plants very close to or within the crop rows. The accuracy of the
methodology was evaluated by comparing the estimation of weed coverage derived from the UAV
image classification and the values observed in the on-ground sampling photographs (Figure 6). The
relationship between the estimated and observed weed densities was highly satisfactory, with a
coefficient of determination of R>=0.89 and an RMSE=0.02, indicating good agreement in the three

categories considered.

At low weed coverage, most values were located above the 1:1 line, indicating some degree of
overestimation of the weed infestation. From an agronomical perspective, this pattern of results is
not adverse because it reduces the chance of missing isolated weeds. That is, it takes into account
the fact that farmers might choose to treat weed-free zones, rather than assume the risk of allowing
weeds to go untreated (Gibson et al. 2004). In contrast, the OBIA procedure slightly underestimated
weed infestation at moderate and high weed densities, which is less important if it is corrected in the

design of the herbicide prescription maps (Gomez-Candén et al. 2011).
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Figure 6. Observed and estimated weed coverage (%) inside the sampling frames from on-ground photographs

and UAV image analysis, respectively.

The weed map, with weed infestation levels classified in three categories, was also evaluated
using the confusion matrix shown in table 4. The matrix indicates an overall accuracy of 86% and a
kappa index of 0.76. The classification was over grid units, not over pixels, so the OA was the
percentage of frames correctly classified (the number correct frames as a percentage of the total
number of sampling frames). Confusion between frames was minor and only occurred between
consecutive categories. The matrix also indicates the omission and commission errors in each
category. OE indicates the proportion of frames with an observed weed coverage that was
misclassified as being of a different coverage, and CE indicates the proportion of frames classified
with levels of weed coverage that really correspond to other levels of coverage. As previously
mentioned, only errors of underestimation of the weed category are important from the perspective
of weed control (Lopez-Granados 2011), e.g., reporting 0% at low and high weed densities and

reporting 17% of the frames at moderate weed coverage.
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Table 4. Classification matrix for three categories of weed coverage by comparing ground-truth weed sampling

and the weed map derived from the UAV image classification.

UAV weed map

Ground-truth weed sampling Low Moderate High Number of Omission Underestimation
(<5%) (5-20%) (>20%) frames Error Error
Low (<5%) 12 1 13 8% 0%
Moderate (5-20%) 2 9 1 12 25% 17%
High (>20%) 3 3 0% 0%
Number of frames 14 10 4 28
Commission Error 15% 10% 25%

Correct classifications are shown in bold.
Overall accuracy = 86%, Kappa index = 0.76

6. CONCLUSIONS

An unmanned aerial vehicle and a six-band multispectral camera were used to collect remote
images of a maize field in the early season for the purpose of generating weed maps for further early
SSWM. A robust and automated OBIA procedure was developed for the automatic discrimination of
crop rows and weeds in georeferenced and 2-cm spatial resolution remote images. The task was
complex due to both the spectral properties and general appearance of weeds and crop plants are
very similar in their early growth stages, and due to the difficulties created by variability and
changing conditions in natural crop fields. The algorithm efficiently identified all the crop rows based
on their linear pattern and on the contextual features of the vegetation objects that belong to the
rows. Weed plants located in the inter-row area were then distinguished from crop plants on the
basis of their relative positions with respect to the crop rows. Lastly, the weed cover percentages in
three categories were determined to generate a weed map in a grid framework. The algorithm

yielded very satisfactory results in most cases.

The OBIA procedure computes multiple data and statistics derived from the image analysis and
the classification outputs that can be exported in image, vector and table file formats. The tables and
weed map provided helpful information that can be used in decision-making systems to calculate

herbicide requirements and estimate the overall cost of weed management operations.

The combination of ultra-high-spatial-resolution UAV remote images and the OBIA procedure
developed in this study permits the generation of weed maps in early maize crops for use in planning
the application of in-season weed control measures, which has not been possible previously with
traditional airborne or satellite images. This technology can help in the implementation of the
European legislation for the sustainable use of pesticides, which promotes reductions in herbicide

applications and the utilization of doses appropriate to the levels of weed infestation present.
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1. RESUMEN

Para optimizar la aplicacion de herbicidas en cultivos se necesitan mapas de malas hierbas
obtenidos de forma precisa y en el momento requerido. En este contexto, la presente investigacién
cuantificé la eficacia y limitaciones de imagenes remotas tomadas con un UAV para la deteccién
temprana de malas hierbas en estado de plantula. La capacidad para discriminar malas hierbas fue
significativamente afectada por la resolucidn espectral (tipo de cdmara), espacial (altura de vuelo) y
temporal (fecha del estudio) de las imagenes. Las imagenes en color-infrarrojo tomadas a 40 m de
altura y 50 dias tras la siembra (fecha 2), cuando las plantas tenian 5-6 hojas verdaderas, dieron lugar
a la mayor precision en la deteccion de malas hierbas (91%). A esta altura de vuelo, las imagenes
tomadas antes de la fecha 2 tuvieron resultados ligeramente mejores que las tomadas después. Sin
embargo, esta tendencia cambié en las imagenes en rango visible tomadas a 60 o mas metros de
altura, las cuales arrojaron resultados notablemente mejores en la fecha 3 (57 dias tras la siembra)
gracias al mayor tamafio de las plantas. Nuestros resultados mostraron los requerimientos en cuanto
a resolucidon espectral y espacial necesarios para generar un mapa de malas hierbas en fase
temprana, asi como el mejor momento para la toma de las imagenes con un UAV, con el objetivo

ultimo de aplicar estrategias de control localizado de malas hierbas.

2. ABSTRACT

In order to optimize the application of herbicides in weed-crop systems, accurate and timely
weed maps of the crop-field are required. In this context, this investigation quantified the efficacy
and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection
of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery
spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions.
The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5-6
true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images
captured before date 2 had slightly better results than the images captured later. However, this
trend changed in the visible-light images captured at 60 m and higher, which had notably better
results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results
showed the requirements on spectral and spatial resolutions needed to generate a suitable weed
map early in the growing season, as well as the best moment for the UAV image acquisition, with the

ultimate objective of applying site-specific weed management operations.
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3. INTRODUCTION

Sunflower is the most important annual oilseed crop in southern Europe and the Black Sea
area, with over 5 M-ha grown annually (FAO 2014). Spain has 0.8 M-ha of sunflowers (MAGRAMA
2014). The patchy distribution of weeds in sunflower fields has already been demonstrated using on-
ground sampling (M. Jurado-Expdsito et al. 2009; Montserrat Jurado-Expdsito et al. 2003) and
remote imagery from piloted aircraft (Pefia-Barragan et al. 2007). Although the distribution of weeds
is patchy, herbicides are usually broadcast over entire fields, even onto the weed-free areas. To
overcome this problem, site-specific weed management (SSWM) is used to spray an adapted
herbicide treatment only on weed patches and/or to adjust different herbicide applications
according to weed species composition, e.g., herbicide resistant, broadleaved or grass weeds. Thus,
one of the crucial components for SSWM is accurate and timely weed maps, which must be
generated to design the corresponding site-specific herbicide applications (Shaw 2005). With the

SSWM approach, the hope is to also reduce herbicide use.

This strategy fits well with European concerns on herbicide use (Horizon 2020, European
Commission, Societal Challenge 2: Sustainable Food Security. SFS-3-2014: Practical solutions for
native and alien pests—including weeds—affecting crops) and has prompted the European Union to
enact restrictive legislation (Regulation EC No. 1107/2009 and Directive 2009/128/EC). The
legislation requires action to achieve the sustainable use of pesticides and to promote the use of the
most advanced and latest technologies. Of the advanced technologies in weed research today, one of
the most promising and innovative is the use of Unmanned Aerial Vehicles (UAVs or drones)
equipped with a perception system for mapping weeds. The maps generated from the remote
images captured with the UAV can be used for the further design of appropriate site-specific control

measures.

Compared with other remote platforms such as satellites or piloted aircrafts, UAVs can operate
at low altitudes (e.g., <120 m), even on cloudy days, and can provide an ultra-high spatial resolution
(e.g., pixels < 3 cm) image of the entire crop field. Configurations and specifications for an UAV to
map weeds for early site-specific weed management have been reported by (Torres-Sanchez et al.
2013). The UAV can be programmed on demand and it can fly with great flexibility and collect
remote imagery of crops at critical times in the growing season, thereby improving the farmer’s
decision-making process (Lelong et al. 2008). The total availability is fundamental for UAVs to
perform a multi-temporal study in early weed detection and to determine the best time for taking
the imagery needed to design post-emergence herbicide control strategies, just when the crop and
weeds have similar appearance and spectral characteristics (Lopez-Granados 2011; Torres-Sanchez,

Pefia, et al. 2014). With the high spatial and temporal resolution requirements and the spectral
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similarity between weed and crop seedlings, remote-sensed discrimination of early-season crop and

weeds remains a challenge in weed research.

According to (Yu et al. 2006), one of the inherent problems with increasing the spatial
resolution of remote images is that single pixels no longer capture the characteristics of classification
targets. This produces an increase in intra-class spectral variability and, subsequently, a reduction in
statistical separability among classes with conventional pixel-based classification methods, which can
involve a reduction in classification performance and accuracy in comparison with coarser resolution
images. Object-based image analysis (OBIA) is a powerful procedure and a fine alternative to the
pixel-based methods (Blaschke 2010). The OBIA approach first identifies spatially and spectrally
homogenous units (objects) created by grouping adjacent pixels according to a procedure known as
segmentation. It then develops automated and auto-adaptive classification methods by using the
objects as the minimum information units and combining their spectral, contextual (position,
orientation), morphological and hierarchical information. This methodology has been used
successfully for segmenting and classifying a QuickBird satellite image as the first step in isolating
wheat fields from other soil uses for further detection of cruciferous weed patches at a late growth
stage (de Castro et al. 2013). Recently, Pena et al. (2013) translated the OBIA strategy to early-season
weed discrimination in maize by using UAV imagery and a three-step automatic classification
approach: (1) image segmentation into multi-pixel regions that define plants (crop and weeds) and
soil background objects; (2) discrimination of vegetation objects based on spectral information; and
(3) classification of crop and weed plants based on the position of each plant relative to the crop
rows. This OBIA strategy produced maps of three weed coverage categories, and (Pefia et al. 2013)
concluded that an accurate definition of the crop-row structure was essential for the subsequent

discrimination between crop and weeds.

Another crucial point for improving the discrimination of weeds in ultra-high spatial resolution
images would be to enhance the differences among vegetation and non-vegetation (mostly bare soil)
objects by using vegetation indices as well as to determine the optimal threshold value that sets the
breakpoint between both general classes (Montalvo et al. 2013). One of the automatic methods for
threshold calculation is Otsu’s (Otsu 1979), which is commonly applied to binary classification (in our
case, bare soil and vegetation) and calculates the optimum threshold based on minimising combined
spread (intra-class variance). A recent evaluation of the performance of Otsu’s threshold method in
UAV images (Torres-Sanchez et al. 2015) considered two different vegetation indices as well as the
influence of image resolution and objects size (i.e., segmentation scale), and concluded that these
parameters are critical to accurately characterise the spectral threshold for a precise classification of

vegetation (crop and weeds) and non-vegetation objects.
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Accounting for the factors introduced previously, the objectives of this work were as follows:
(1) to determine the optimum configuration of the UAV flight for the altitude, the date of flight (i.e.,
crop and weed phenological stage) and the type of sensor (visible-light vs. visible-light + near-infrared
multispectral cameras); (2) to determine the best sensor for enhancing vegetation (crop and weed)
and bare soil class discrimination as affected by the vegetation index applied; and (3) to design and
evaluate an OBIA procedure for crop and weed patch detection. Limitations and opportunities of using
higher flight altitudes were also analysed for each sensor, aiming to optimise the image acquisition

and classification processes.

4. EXPERIMENTAL SECTION

4.1. Study Site

The multi-temporal study was carried out in a sunflower field situated at the public farm
Alameda del Obispo, in Cérdoba (southern Spain, coordinates 37,856N, 4806W, datum WGS84). The
sunflower crop was sown on 15 April 2014, at 6 kg-ha-1 in rows 0.70 m apart, and emergence of the
sunflower plants began 15 days after sowing (DAS). An area of approximately 0.5 ha, with flat ground
(average slope <1%) and naturally infested by broadleaved weeds such as Chenopodium album L.
and Convolvulus arvensis L, was studied in detail. Weed and crop plants were in the principal stage 1
(leaf development) from the BBCH extended scale (Meier 2001) during the study and grew from four

true leaves (code 14-16) in the beginning of the experiment to eight true leaves (code 18) at the end.

4.2, UAV Flights: Camera, Altitudes and Dates

The remote images were acquired with two different cameras mounted separately in a
quadrocopter UAV, model md4-1000 (microdrones GmbH, Siegen, Germany, Figure 1A): (1) a
conventional still visible-light camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo,
Japan), which acquired 12-megapixel images in true Red-Green-Blue (RGB) colour with 8-bit
radiometric resolution; and (2) a multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc.,
Chatsworth, CA, USA), which acquired 1.3-megapixel images composed of six individual digital
channels arranged in a 2 x 3 array that can acquire images with either 8-bit or 10-bit radiometric
resolution (Figure 1B). This camera has user configurable band pass filters (Andover Corporation,
Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths at B (450 nm), G (530
nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm).
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Figure 1. (A) Unmanned aerial vehicle (UAV), model microdrone MD4-1000, with the visible-light camera
attached, flying over the sunflower crop in the early season; (B) TetraCam Multispectral camera; and (C)

Spectralon® panel placed in the middle of the field to calibrate the spectral data.

Detailed information on the configuration of the UAV flights and specifications of the vehicle
and the cameras can be found in (Torres-Sanchez et al. 2013). A set of aerial images was collected at
intervals of 6-7 days on 29 May (date 1, 44 DAS), 4 June (date 2, 50 DAS) and 11 June (date 3, 57 DAS)
to quantify multi-temporal discrimination of weeds and crop at the different growth stages described
previously (Figure 2). On each date, flights for each camera were conducted at four different
altitudes: 40, 60, 80 and 100 m. Each flight route was programmed into the UAV software so that the
vehicle ascended vertically above a fixed point in the sunflower field. Once the UAV achieved each
programmed altitude, a unique image was captured as the vehicle stopped. In total, twenty four
images were taken and analysed, which were geo-referenced by identifying a set of ground target
points located in the field by using a GPS and attributing their coordinates to the remote images by

using the ENVI software (ENVI 4.4., Research Systems Inc., Boulder, CO, USA).
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May 29 (44 DAS) June 4" (50 DAS) June 11" (57 DAS)

Figure 2. UAV images collected over the sunflower field at 40 m on three different dates in the early season

(top) and associated on-ground photograph (bottom).

In the course of the UAV flights, a barium sulphate standard Spectralon® panel (Labsphere Inc.,
North Sutton, NH, USA) of 0.45 x 0.45 m (Figure 1C) was placed in the middle of the field to correct
the image data for the effects of shifting light conditions (e.g., due to changes in solar elevation or
clouds) over time (several flight missions in three different dates). Digital images were spectrally
corrected by applying an empirical linear relationship in which the equation coefficients were derived
by fitting the digital numbers of the image pixels located in the Spectralon panel to the Spectralon
ground values (Hunt, Jr. et al. 2010). The images taken with the visible-light camera were used
directly after downloading to the computer, but images taken with the multispectral camera
required preprocessing. This camera takes the images of each channel in raw format and stores them
separately on six individual CF cards embedded in the camera. Therefore, an alignment process was
needed to group the six single images into a multi-band image. The Tetracam PixelWrench 2 software

(Tetracam Inc.) supplied with the multispectral camera was used to perform the alignment process.

4.3. OBIA Algorithm

The OBIA procedure designed for the weed mapping tasks was developed using the

commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany). It was based
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maize fields (Pefia et al. 2013; Pefa-Barragan et al. 2012). However, the procedure presented here is
original and includes improvements and variations related to the special characteristics of sunflower

crops.

OBIA software UAV image

v

Image Segmentation

Vegetation discrimination
(Otsu’s automatic Thresholding)

'

Estimation of
crop-row orientation

t Ground-truth Data
Classification of crop-rows 1

(based on accumulation of 3
vegetation objects)

v

b, 4

Classification of crop,
weeds and bare-soil

v

Validation of results and
Data analysis

Figure 3. Flowchart of the OBIA procedure applied for crop-row classification and weed detection.

The OBIA algorithm combined object-based features such as spectral values, position, orientation
and hierarchical relationships among analysis levels; the algorithm recognised that the plants
growing on the surface between crop rows were weed plants. Therefore, the algorithm was
programmed to accurately detect the crop rows by the application of a dynamic and auto-adaptive
classification process, and then classified the vegetation objects outside the crop rows as weeds. The
flowchart of the detailed image analysis can be examined in (Pefia et al. 2013); in this paper, only the
main variations and upgrades are emphasised. The entire process is automatic and is composed of a

sequence of routines described as follows (Figure 3):

(a). Field segmentation in sub-plots: The algorithm segmented the UAV images into small plots
of a customised size to address the spatial and spectral variability of the crop field. In our

case, sub-plots of 5 x 5 m were selected and sequentially analysed.
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(b).

(©).

Sub-plots segmentation in objects: The image sub-plots were sub-segmented using the
multi-resolution algorithm implemented in eCognition to create multi-pixel objects
representing the elements of the fields, i.e., crop and weed plants (vegetation objects) and
soil background (bare soil objects). Segmentation is a bottom-up region-merging process
based on band weights and on five parameters (scale, colour, shape, smoothness and
compactness) defined by the operator. After visually testing several segmentation outputs,
the selected values were 10, 0.9, 0.1, 0.5 and 0.5 for scale, colour, shape, smoothness and
compactness, respectively. Within the range of spatial resolutions (a few centimetres)
studied in this investigation, this segmentation setting was adequate for all the studied
scenarios. However, this issue merits further investigation aiming to optimize the
segmentation setting as affected by the crop pattern (e.g., crop row separation) and image
spatial resolution (Torres-Sdnchez et al. 2015). The resulting objects contained new
contextual and morphological information (e.g., orientation, position, size, shape, and

others) that were used in the next phases of the classification process.

Vegetation objects discrimination: After segmentation, the first step in the classification
process was to discriminate the vegetation objects from the bare soil objects. Two spectral
indices were used: (1) the Excess Green index (ExG, Equation (1)) for the visible-light
camera (Tellaeche et al. 2008; Woebbecke et al. 1995); and (2) the Normalised Difference
Vegetation Index (NDVI, Equation (2)) for the multispectral camera (Rouse et al. 1973). The

indices were calculated as follows:

These indices enhance spectral differences of vegetation objects against the non-vegetation

ones as previously reported by (Jorge Torres-Sanchez et al. 2013), while minimizing solar radiance

and soil background effects (Jackson and Huete 1991). The determination of the optimum ExG and

NDVI values for vegetation discrimination in the UAV images was conducted by an automatic and

iterative

threshold approach following the method of Otsu (Otsu 1979) and implemented in

eCognition according to (Torres-Sanchez et al. 2015):

(d).

Crop-row classification: Once the vegetation objects were discriminated, the crop-row
structure was classified by following three steps: (1) estimation of the crop-row

orientation; (2) image gridding based on stripes following the crop-row orientation; and (3)
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crop-row classification. First, crop-row orientation was determined by an iterative process
in which the image was repeatedly segmented in stripes with different angles (from 0° to
180°, with 1° of increase ratio), with the selected orientation the one in which the stripes
showed a higher percentage of vegetation objects. Next, a new segmentation level (i.e.,
upper level) was created above the previous multi-resolution one (i.e., lower level) in which
the image was segmented to create a mesh of stripes with the same direction as the
selected crop-row orientation angle. Finally, the stripe in the upper segmentation level
with the higher percentage of vegetation objects in the lower segmentation level were
classified as crop rows, following the criteria described in (Guerrero et al. 2013). In this
process, after a stripe was classified as a crop-row, the separation distance between rows
(0.7 m in sunflower) was used to mask the neighbouring stripes within this distance, which

avoided classifying areas with high weed infestation as crop rows.

(e). Weed and crop discrimination: Once the crop-rows were classified, the remaining stripes
were classified as crop-row buffer (strings in contact with the crop rows) and non-crop area
in the upper segmentation level. Next, the hierarchical relationship between the upper and
the lower segmentation levels was used to execute the discrimination of crop and weeds.
The vegetation objects (in the lower segmentation level) that were located either under
the crop rows or under the non-crop area (in the upper segmentation level) were classified
either as sunflower or as weeds, respectively. The remaining vegetation objects located
under the buffer area were classified following a criterion of minimum spectral distance,
i.e., an unclassified vegetation object was assigned to the sunflower or weed class
depending on its higher degree of spectral similarity to its surrounding sunflower or weed

objects, respectively.

(f). Weed coverage assessment: A vector file containing 30 geo-referenced sampling frames, 1 x 1
m in size, was overlapped in the classified image to calculate the relative area
corresponding to each class, i.e., sunflower, weeds and bare soil, in every frame. Weed
coverage was determined as the percentage of pixels classified as weed per unit of ground
surface. Information derived from these frames was used for validation purposes, as

explained in the next section.

4.4. Evaluation of OBIA Algorithm Performance

The performance of the OBIA algorithm in each case study (each camera, flight altitude and
date) was evaluated by visually comparing the results obtained for crop-row identification and weed

discrimination with real data observed in 30 ground-truth 1 x 1 m? sampling frames in the field.
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These sampling areas were regularly distributed in the study area and were representative of the
weed infestation observed in the field and included a number of sampling frames free of weeds.
Ground-truth observations were derived from vertical remote images collected with a UAV flight at
10 m. For this purpose, the UAV equipped with the visible-light camera was programmed to fly
continuously taking overlapped images every second (80% forward-lap and 30% side-lap). The set of
UAV images were mosaicked using Agisoft Photoscan Professional Edition (Agisoft LLC, St.
Petersburg, Russia) software following the protocol described in (Gédmez-Candon et al. 2014; Torres-
Sanchez et al. 2013). Because of the low flight altitude, the mosaicked image had 0.38 cm/pixel of
spatial resolution, which made it possible to visually identify the individual plants in every reference
frame and thus conduct a manual classification of the ground-truth data for crop plants, weeds and
bare-soil (Figure 4). By comparing observed data and classification outputs in each case study, the
OBIA algorithm was evaluated by quantifying the number of correct frames, i.e., those sampling
frames in which all the weed plants were correctly attributed to weed objects (Figure 4-1-C). There is
no 4-1, please confirm Alternatively, incorrect frames (e.g., crop plants classified as weed objects,
weed plants classified as bare soil objects, etc.) were also labelled as three different types: (1)
underestimated, i.e., weed-infested frames in which some weed plants were detected but other
weed plants remained undetected by the OBIA algorithm (Figure 4-2-C); (2) false negative, i.e., weed-
infested frames in which no weeds were detected (Figure 4-3-C); and (3) false positive, i.e., frames in
which weeds were overestimated (e.g., crop plants or bare soil elements classified as weed objects)

(Figure 4-4-C).

5. RESULTS AND DISCUSSION

5.1. Image Spatial Resolution and Covered Area As Affected by Flight Altitude

The image spatial resolution captured by each camera and the area covered by each individual
image at different UAV flight altitudes are shown in Table 1. The visible-light and the multispectral
cameras captured images with pixel sizes ranging from 1.52 cm to 3.81 cm and from 2.16 cm to 5.41
cm at flight altitudes of 40 and 100 m, respectively (Figure 5), as determined by a proportional
relationship between sensor resolution and flight altitude. The ultra-high spatial resolution of the
sensors is one of the crucial features for weed mapping early in the season when crop and weeds are

at a young phenological stage (e.g., four true leaves).
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Figure 4. Examples of four sampling frames showing: (1) correct classification; (2) underestimation of weeds; (3)
false negative errors (i.e., no detection of weeds); and (4) false positive errors (i.e., overestimation of weeds) in
three scenarios: (A) On-ground photographs; (B) manual classification of observed data; and (C) image

classification performed by the OBIA algorithm. Clearer original image

Table 1. Image spatial resolution (pixel size) and area covered as affected by flight altitude and type of camera.

Flight Altitude Pixel Size (cm) Covered Area (ha)
Visible-Light Camera  Multispectral Camera  Visible-Light Camera  Multispectral Camera
40m 1.52 2.16 0.28 0.06
60 m 2.28 3.27 0.63 0.14
80m 3.04 4.33 1.13 0.25
100 m 3.81 5.41 1.77 0.38
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Figure 5. Details of the image spatial resolution captured by the visible-light camera and the multispectral

camera at: (A) 40 m altitude; and (B) 100 m altitude.

In general, at least four pixels are required to detect the smallest objects within an image
(Hengl 2006). Accordingly, if the discrimination of individual weed plants is the objective, the pixel
size should be approximately 1-4 cm, which corresponds to flight altitudes of 40 to 100 m for the
visible-light camera and altitudes of 40 to 60 m for the multispectral camera. However, if the
objective is weed patch detection, the pixel size of remote images could be 5 cm or even greater,
which corresponds to a flight altitude of 100 m or higher for both cameras. One of the most relevant
parameters was the area overlap because of its strong implications for the configuration of the
optimum flight mission. This parameter is directly related to the flight altitude and the type of
camera. At the flight altitudes in this study, each remote image captured with the visible-light camera
covered approximately 4.6 times more surface area than the multispectral camera, e.g., increasing

from 0.06 ha to 0.28 ha at 40 m and from 0.38 to 1.77 ha at 100 m, respectively (Figure 6).
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Figure 6. Individual UAV images collected with the multispectral (1) and the visible-light (2) cameras at: 40 m (A);
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and 100 m (B) altitude. The yellow squares serve to compare the area covered by the images from each camera
at both flight altitudes. The sunlight effect (light spot) observed in 1-B and 2-B were minimized after applying

vegetation indices (see Section 4.3).

The differences in pixel size and covered area were because of the technical specifications of
each camera, since the camera focal length affects both parameters, whereas the camera sensor size
only affects the image’s pixel size. Accordingly, when the user defines the flight program, it is
necessary to balance the flight project to keep the image spatial and spectral quality steady, as the
area covered is considered. Two main conditions must accounted for: (1) to provide remote images
with a fine enough spatial and spectral resolution to guarantee weed discrimination at early growth
stages; and (2) to cover as much surface area as possible to optimise the operation length of the UAV

flight.

5.2. Accuracy Assessment on Classification of Crop-Rows

The OBIA algorithm identified and counted the number of sunflower rows with 100% accuracy
in all the images, independent of the camera type, date or flight altitude (Figure 7). This
demonstrated the efficiency and robustness of the procedure developed for crop-row classification
in which the stripes with the higher percentage of vegetation objects were selected as seeds for
crop-row identification. This has strong implications for the success of the next steps in the OBIA
procedure designed for weed discrimination, which should be focused on minimising potential errors

in detecting the vegetation objects (weeds) located in the area between the sunflower rows.
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Figure 7. Image classified in weeds (red), sunflower crop rows (green) and bare soil (brown) using an UAV flying

at 40 m altitude with: (A) visible-light camera (ExG index); and (B) multispectral camera (NDVI index).

5.3. Weed Discrimination As Affected by Camera, Date and Flight Altitude

Accuracy assessment on weed discrimination attained from analyses of the UAV images
captured by each camera on each flight (four flight altitudes and three flight dates) is shown in Table
2. A ground-truth frame was classified as correct if all the weed plants within the frame were
correctly attributed to weed objects. Otherwise, the frame was labelled as either underestimated,
false negative or false positive according to the error observed (see Section 2.4). On the first date (44
DAS, when crop and weed were at the four true leaf phenological stage), 71% classification accuracy
for both cameras was obtained for discrimination of weeds at the lowest altitude (40 m). However, at
higher flight altitudes, the multispectral camera had higher accuracy (from 62% at 60 m to 43% at
100 m) than the visible-light camera (43% and 19%, respectively). From the analysis of the errors,
most errors at 40, 60 and 80 m were attributed to false-negative errors, i.e., misclassification was
produced by non-detection of weeds (Figure 4-3-C) keep consistent with that labelled in Figure 4 or,
of minor importance, because of the underestimation of weed coverage (Figure 4-2-C). At 100 m, the
trend was maintained in images captured with the multispectral camera but not with the images
captured by the visible-light camera because, in the latter case, most of the errors were due to false
positives (47%), which was attributed to classification of sunflowers as weeds (Figure 4-4-C). This
source of error gains importance at higher altitudes because of the spectral mixture between
sunflowers and bare soil elements that occurred in the edges of the crop-rows. Because of a loss of
spatial resolution, spectral information of the row edge pixels is a mix of sunflower (high ExG and NDVI
values) and bare soil (low ExG and NDVI values) spectral response, which is similar to the weed spectral
response in some cases (mainly in the visible-light images) and, as a result, it causes over-classification
of weeds in the crop-row edges. On the first date, the algorithm for weed detection performed
better for imagery captured with the multispectral camera at any of the flight altitudes even with its

lower spatial resolution, compared with the visible-light imagery. This indicated that the near-
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infrared spectral information used by the multispectral camera is more suitable for this task and
compensated for its lower spatial resolution (Table 1). From an agronomic point of view, the false
positive errors (overestimation of weeds) are more acceptable than false negative errors (non-
detection of weeds) for generating the weed maps in practice, assuming that farmers would choose
to treat weed-free areas rather than risk allowing weeds to go untreated (Gibson et al. 2004).
However, both cameras were fully effective (100% accuracy) at 40 and 60 m in the classification of
the weed-free areas, which drastically reduced the potential impact of an overestimation of the
weeds at the field scale. The accuracy was maintained by the images captured at 80 and 100 m with

the multispectral camera but not with the visible-light images (44% and 33% accuracy, respectively).

On the second date (50 DAS, when crop and weeds were at the five-six true leaf phenological
stage), the weed detection procedure found higher classification accuracy for both cameras, resulting
in 77% and 91% of correct weed-infested frames at 40 m for the visible-light and the multispectral
cameras, respectively. Similar to results from the previous date, the classification accuracy decreased
in all the images with increasing altitude. The majority of errors were attributed to no-detection
(false negative) and underestimation of weeds, although the highest value was the false positive
error (41%) from the visible-light images captured at 100 m because of incorrect classification of the
crop-row edges as weeds (Figure 4-4-C). In the weed-free frames, the images captured with the
multispectral camera were 100% accurate at 40, 60 and 80 m, although the OBIA algorithm slightly
decreased its accuracy to 88% at 100. In the visible-light images, the results followed the trend of the
first date, although the images had lower accuracy at 40 and 60 m (88%) and higher accuracy at 80 m
(63%) and 100 m (37%) in comparison with the previous date. As an example, the weed maps
generated on the second date from the images captured by both sensors at 40 m (best scenario) are
shown in the Figure 7. Weed coverage was found to be 1.25% of the field area with the NDVI images

(multispectral camera) and 0.98% with the ExG images (visible-light camera).

On the third date (57 DAS, when crop and weeds were at the seven-eight true leaf
phenological stage), lower accuracy of weed detection was found, in general, than on the previous
dates for the majority of the images and flight altitudes analysed, with the exception of the visible-
light images captured at 60 and 80 m. For example, the accuracy of weed detection in the images
captured at 40 m was 3% and 9% lower with the visible-light camera (ExG images) and 11% and 31%
lower with the multispectral camera (NDVI images) in comparison with the results from date 1 and 2,
respectively. On this date (57 DAS), the highest percentage of errors was mainly from non-detection
of weeds (false negative) in both types of images, although primarily in the images captured with the
multispectral camera. Although the weed plants were bigger on this date and their discrimination

supposedly easier, weeds were masked by sunflower shadows, which increased the degree of weed
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misclassification. False positive errors were also an important source of confusion in the visible-light
images captured at 80 and 100 m, occurring in 36% and 32% of the weed-infested frames, respectively,
and in 37% of the weed-free frames at both altitudes. As on the previous dates, performance of the
OBIA algorithm in the weed-free zones was very satisfactory with the multispectral camera at any

altitude and with the visible-light camera at 40 and 60 m.

After the importance of efficient classification of crop-rows, spectral information derived from
EXG (in the visible-light images) and NDVI (in the images captured with the multispectral camera)
indices could initially be considered the primary factor affecting weed identification. However, image
spatial resolution (or, equally, flight altitude) and the date of the study (i.e., crop and weed
phenological stage) were also key factors in the accuracy of the classification, mainly in the weed-
infested zones (Table 2). According to the results obtained for the weed-infested frames using UAV
images captured at 40 m with either of the cameras, the best time for weed detection in early-
season sunflower fields was approximately 52 days after sowing (date 2). At this altitude, our results
showed that the images captured before this date were more suitable for weed detection than the
images captured later in the growing season. However, the best time for weed detection differed for
each type of image at higher flight altitudes. If the visible-light camera was used at 60 or 80 m, the
best results were obtained for date 3 (57 DAS) because this camera was ineffective on the earliest
dates due to the small size of the weed plants and some degree of confusion between their bright
leaves and the bare background soil. This problem was minor with the multispectral camera because
of the near-infrared information provided in these images, and the results were slightly better on date

1 (44 DAS) than on date 3 at 60, 80 and 100 m.

Considering both weed-infested and weed-free zones, the accuracy obtained with the
multispectral camera (by using NDVI images) was 14%, 18% and 5% higher than the accuracy
achieved with the visible-light camera (by using ExG images) on dates 1, 2 and 3, respectively. These
results have relevant implications for choosing the most appropriate camera because the visible-light
camera is a low-cost sensor, whereas the multispectral camera is a costly sensor. Moreover, the
visible-light camera generates higher spatial resolution imagery, and its images cover a larger area of
study in comparison with the multispectral camera. The errors observed in the ExG images were
mainly due to false negative (i.e., no-detection of weeds); the NDVI images detected weed plantsin a
higher number of frames, but weed coverage was underestimated in some cases. The latter errors
could be more acceptable to the farmers because they usually prefer a conservative option and avoid
leaving weed patches untreated. Importantly, the OBIA algorithm successfully detected 100% of the
crop rows and almost all the weed-free frames in the majority of the cases. This result is essential for

providing accurate information to the decision-making system and to help the farmers select, with
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near 100% confidence, the weed-free areas where the site-specific weed control equipment does not
need to go. This is very relevant not only for reducing herbicide applications but for optimising

energy (fuel) and field operating time and expense.

6. CONCLUSIONS

Until now, obtaining weed infestation maps early in the growing season has been a great
challenge because of the reduced size of the weed and crop plants and their spectral similarity at an
early phenological stage. This challenge has been overcome in this investigation by the combined use
of an Unmanned Aerial Vehicle (UAV), remote images captured with cameras at visible and near-
infrared spectral ranges, and application of object-based image analysis (OBIA) techniques. With both
cameras, the highest accuracy in weed detection was achieved with the images captured at 40 m on
date 2 (50 days after sowing, DAS) when weeds and sunflower plants had 5-6 true leaves (code 15-16,
BBCH scale). On this date, up to 91% accuracy was attained with the images captured by the
multispectral camera. At 40 m, the images captured sooner (date 1) reported slightly better results
than the images captured later (date 3). However, from 60 m altitude and higher, the images
captured with the visible-light camera reported notably better results on date 3 because of the larger
size of the weed plants and less confusion distinguishing between crop-row edges and weeds. The
source of errors was different for each scenario studied. In general, the errors in the weed-infested
zones were mostly attributed to no-detection or underestimation of weeds, whereas the errors in
the weed-free zones were due to the wrong classification of the crop-row edges as weeds. This latter
type of error was more accentuated in the images captured at higher altitudes due to their lower

spatial resolution that blurred spectral detection.

Extrapolating our results to practical use for farmers and prior to performing an UAV flight
operation, it is recommended that several factors be considered: (1) camera characteristics and price;
(2) area covered by each flight; (3) degree of accuracy needed; and (4) agronomic objective.
Therefore, the information reported in this article might be very useful for commercial companies
that offer UAV services to farmers or to farmers who own their UAV and must decide on the type of
camera (i.e., spatial and spectral sensor resolution) to be used and the optimal flight altitude needed
to generate a suitable weed map of the sunflower field early in the season to apply site-specific weed

management operations.
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CAPITULO 6

EARLY SEASON WEED MAPPING IN
SUNFLOWER USING UAV TECHNOLOGY:
VARIABILITY OF HERBICIDE TREATMENT

MAPS AGAINST WEED THRESHOLDS

Lépez-Granados, F., Torres-Sanchez, J., Serrano-Pérez, A., Castro, A. |. de, Mesas-Carrascosa, F.-J., &
Pefia, J.-M. (2015). Early season weed mapping in sunflower using UAV technology: variability of
herbicide treatment maps against weed thresholds. Precision Agriculture, 17(2), 183-199.

doi:10.1007/s11119-015-9415-8
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Variability of herbicide treatment maps

1. RESUMEN

El control localizado de malas hierbas es definido como la aplicacidon adaptada de tratamientos
de control solo donde se encuentran las malas hierbas, usando el herbicida adecuado a la
emergencia de malas hierbas. El objetivo de este estudio fue la generacién de mapas de infestacion
de plantulas de malas hierbas en dos campos de girasol median el andlisis de imagenes aéreas
solapadas del espectro visible e infrarrojo cercano tomadas por un UAV a 30 y 60 m de altura. Las
principales tareas se centraron en la configuracidn y evaluacién del UAV y sus sensores para la toma
de imdagenes y el mosaicado, asi como en el desarrollo de un procedimiento automatico y robusto de
analisis de imagen para la cartografia de plantulas de malas hierbas con el objetivo de disefiar un
programa de control localizado de malas hierbas. La estrategia de control se basé en siete umbrales
de tratamiento con incrementos del 2,5%, desde un umbral del 0% (el herbicida debe ser aplicado en
cuanto haya presencia de malas hierbas) hasta el 15% (se aplica si la cobertura de malas hierbas es
mayor del 15%). Como un primer paso del analisis de imagen, las hileras de girasol fueron
correctamente alineadas en el orto-mosaico, lo que permitié un analisis de imagen preciso usando
OBIA. El algoritmo OBIA desarrollado para la cartografia de malas hierbas en fase temprana con
imagenes mosaicadas clasificd las hileras de girasol con un 100% de precisién en ambos campos, a
todas las alturas de vuelo y con los dos sensores, indicando la robustez del algoritmo. En cuanto a la
discriminacién de malas hierbas, altas precisiones fueron observadas usando la camara
multiespectral a cualquier altura de vuelo, con la precisién mas alta (casi 100%) siendo registrada
para el umbral de tratamiento del 15%, aunque se obtuvieron resultados satisfactorios para los
umbrales del 2,5% y 5%, con precisiones mayores del 85% para ambos campos. Las menores
precisiones (entre el 50 y 60%) fueron conseguidas con la cdmara visible a todas las alturas y para el
umbral del 0%. Los ahorros en herbicida fueron relevantes en ambos campos, aunque fueron
mayores en el campo 2 debido a su menor infestacidn. Estos ahorros variaron de acuerdo a los
diferentes escenarios estudiados. Por ejemplo, en el campo 2 a 30 m de altura y usando la cdmara
multiespectral, un rango del 23-3% del campo podria ser tratado para umbrales del 0 al 15%. El
procedimiento OBIA calculd multiples datos que permitieron la estimaciéon de las necesidades de

herbicida para un control localizado y a tiempo de las plantulas de malas hierbas.

2. ABSTRACT

Site-specific weed management is defined as the application of customised control treatments
only where weeds are located within the crop-field by using adequate herbicide according to weed
emergence. The aim of the study was to generate georeferenced weed seedling infestation maps in

two sunflower fields by analysing overlapping aerial images of the visible and near-infrared spectrum
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(using visible or multi-spectral cameras) collected by an unmanned aerial vehicle (UAV) flying at 30
and 60 m altitudes. The main tasks focused on the configuration and evaluation of the UAV and its
sensors for image acquisition and ortho-mosaicking, as well as the development of an automatic and
robust image analysis procedure for weed seedling mapping used to design a site-specific weed
management program. The control strategy was based on seven weed thresholds with 2.5 steps of
increasing ratio from 0% (herbicide must be applied just when there is presence or absence of weed)
to 15% (herbicide applied when weed coverage > 15%). As a first step of the imagery analysis,
sunflower rows were correctly matched to the ortho-mosaicked imagery, which allowed accurate
image analysis using object-based image analysis (OBIA methods). The OBIA algorithm developed for
weed seedling mapping with ortho-mosaicked imagery successfully classified the sunflower-rows
with 100% accuracy in both fields for all flight altitudes and camera types, indicating the
computational and analytical robustness of OBIA. Regarding weed discrimination, high accuracies
were observed using the multi-spectral camera at any flight altitude, with the highest (approximately
100%) being those recorded for the 15% weed threshold, although satisfactory results from 2.5% and
5% thresholds were also observed, with accuracies higher than 85% for both field 1 and field 2. The
lowest accuracies (ranging from 50 to 60%) were achieved with the visible camera at all flight
altitudes and 0% weed threshold. Herbicide savings were relevant in both fields, although they were
higher in field 2 due to less weed infestation. These herbicide savings varied according to the
different scenarios studied. For example, in field 2 and at 30 m flight altitude and using the multi-
spectral camera, a range of 23 to 3% of the field (i.e., 77 and 97% of area) could be treated for 0 to
15% weed thresholds. The OBIA procedure computed multiple data which permitted calculation of

herbicide requirements for timely and site-specific post-emergence weed seedling management.

3. INTRODUCTION

Efficient and timely post-emergence weed control is a critical task in crop production because
inappropriate weed management tends to reduce yield and increase the negative impacts on the
environment. Inappropriate weed management is often related to incorrect herbicide use resulting
from three main problems. The first is applying herbicides when weeds are not in the suitable
phenological stage (generally when weeds have 4-6 true leaves, although this depends on specific
weed species or group of species), the second is applying herbicides without considering any weed
threshold (i.e., the weed infestation level above which a treatment is required (Swanton et al. 1999)),
the third is broadcasting herbicides over the entire field, even when weed-free areas are present due
to the usual weed patchy distribution (Jurado-Expdsito et al. 2003, Jurado-Expésito et al. 2005). The
first problem is usually addressed using the expert knowledge of farmers. The other two problems

can be overcome by developing site-specific weed management (SSWM) strategies according to
164 Tesis doctoral




Variability of herbicide treatment maps

weed thresholds (Longchamps et al. 2014). These strategies may consist of both a single herbicide
treatment to weed patches where a unique group of weeds is present (for example either grass or
broadleaved weeds), or use of several herbicides according to the presence of different weed species
or group composition, such as grass, broadleaved weeds or a specific problematic weed such as
Orobanche-broomrape, which can be a serious problem in sunflower production (Garcia-Torres et al.
1994; Molinero-Ruiz et al. 2014). Sunflower (Helianthus annuus L.) is the most important annual
oilseed crop in southern Europe and the Black Sea region, with over 5 M ha grown annually (FAO
2015), of which 0.8 M ha are in Spain (MAGRAMA 2014). Weed control operations (either chemical
or physical) using large agricultural machinery account for a significant proportion of production
costs, create various agronomic problems (soil compaction and erosion) and represent a risk for
environmental pollution. In this context, there is a demand for developing a timely, post-emergence,
site-specific management program in order to reduce the issues associated with current weed
control practices in sunflower and to comply with the European legislation and concerns (Regulation

EC No 1107/2009; Directive 2009/128/EC; Horizon2020).

To achieve these goals, it is necessary to generate the weed cover maps, which allow the
translation of the spatial distribution of the weed infestation into site-specific herbicide treatment
maps. As reported earlier, one of the main variables considered in the weed control decision process
in sunflower is weed threshold, which is based on weed density or level of infestation (Castro-
Tendero and Garcia-Torres 1995; Carranza et al. 1995). If these weed cover or weed infestation maps
are built using a grid design, a weed threshold can be derived, which is the percentage of weed cover
in every grid, above which a treatment is required. This threshold could be the baseline to generate
the herbicide treatment maps. Remote sensing, together with proximal sensing, are now two of the
principal sources of data to monitor weeds in a cost effective way. There are previous studies that
have investigated weed detection and mapping in crops at late growth stages, e.g., flowering, using
imagery from piloted airborne or satellite able to register visible and near-infrared information
(Gutiérrez-Pefia et al. 2008; de Castro et al. 2012; de Castro et al. 2013). However, the images from
these platforms have limited ability to detect weeds at the seedling stage due to their low spatial
resolution. Other remote platforms, on the other hand, can generate the high spatial resolution
imagery (pixel size < 0.05 m) needed to map weeds at very early phenological stages, which can then
be used to develop efficient post-emergence controls. Recent research emphasises the suitability of
unmanned aerial vehicles (UAV) for this purpose (Lépez-Granados 2011; Zhang and Kovacs 2012). A
key component of a UAV is the versatility of the configuration of onboard sensors, flight altitude,
flight planning, etc. The required parameters and their implications for the potential use of UAV in
early weed detection have been reported by Torres-Sanchez et al. (2013). The main advantages of

using UAV is that they can carry (even simultaneously) different sensors to record reflected energy at
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diverse spectral ranges according to each detection objective, fly at different altitudes to adjust the
desired high spatial resolution and be programmed on demand at critical stages of crop growth. This
is crucial when detecting weeds in crops for early post-emergence SSWM when crops and weeds are

at the same early phenological stage and they show spectral and visual similarities.

As a result of collecting images with a very high spatial resolution, UAV images taken at low
altitude cannot cover the entire study area. This causes the need to take a sequence of a percentage
of forward (lateral) and side (longitudinal) overlapped imagery, which acquire a number of images
per hectare depending on the flight altitude. These individual images must then be stitched together
and ortho-rectified to create an accurately geo-referenced ortho-mosaicked image of the entire plot
for further analysis and classification. Image mosaicking is a well-known task for integrating spatial
data to assess and monitor disasters (Li et al. 2011), map archaeological sites (Lambers et al. 2007) or
conduct high quality cadastral and urban planning (Haarbrink and Eisenbeiss 2008) using local
invariant features or ground control points to perform the aero-triangulation. However, the splicing
image used to generate an ortho-image (also named ortho-mosaicked image) of herbaceous crops at
early stages of phenological development presents serious difficulties due to the high repetitive
pattern of these fields. In a recent work, our research group discussed a detailed procedure to
produce accurate ortho-imagery with spatial resolutions from 0.0074 to 0.0247 m and representing
the entire area of wheat fields (rows 0.15 m apart) by using UAV flying at low altitudes (Gémez-
Candon et al. 2014). This work concluded that one of the crucial parameters for generating ortho-
mosaicked imagery when mapping row crop environments is crop row alignment on both sides of the
overlapped images. This issue was addressed and crop line continuity was preserved because overall
spatial errors less than twice the spatial resolution were obtained. This methodology was very useful

in the development of the objectives herein presented.

One of the intrinsic problems when processing very high spectral resolution imagery is that
individual pixels do not capture the distinctiveness of the targets investigated, which generates a
high intra-class spectral variability and, consequently, resulting in difficulties to achieve statistical
separation. Segmentation is the process of dividing a digital image into multiple regions according to
the proposed objective. For example, to discriminate weeds in a crop using UAV imagery, the
segmentation would consist of multi-pixel regions defined by crop, weeds and bare soil. That is,
throughout the segmentation, spatially adjacent and spectrally homogeneous pixels would be
grouped to create units named objects that contain more information than individual pixels, allowing
for a more meaningful interpretation. This is the main idea behind the steps of the OBIA (object-
based-image-analysis) procedure: 1) to automatically segment an image into objects, 2) to combine

their spectral, contextual, morphological and hierarchical information, and 3) to classify the image by
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using them as the minimum information units (Blaschke, 2010). Pefia et al. (2013) developed an OBIA
algorithm using single UAV imagery (not ortho-mosaicked imagery) for early detection of weeds in

maize

As previously described, UAV ortho-mosaics are becoming an important tool for the
development of site-specific weed prescription strategies because they can offer information on the
entire study area and can detect small plants (crop and weeds) at early growth stages, which are not
detected using other kinds of remote platforms with coarse spatial resolution (like satellite or
conventional aerial platforms with which objects smaller than 0.20 m cannot be detected).
Considering that highly accurate mosaics have been obtained working in wheat fields (Gémez-
Canddn et al. 2014), generation of ortho-mosaicked imagery for sunflower fields with 0.70 m row
spacing seems to be a reasonable starting point for developing an early SSWM program, in which the
relative location of weeds in proximity to the crop rows is a hypothesis for discriminating and
mapping weed cover. Thus, the objectives of this work were to: 1) assess the optimal planning of
UAV flights with respect to flight altitude and sensor type (visible vs visible+Near-infrared cameras)
for generating accurate ortho-imagery, 2) design and evaluate an OBIA procedure for mapping bare
soil, crop-rows, weed-patches and weed-free zones using the ortho-mosaicked imagery, and 3)
simulate several field-based scenarios according to different weed thresholds to evaluate the

sections of the sunflower fields that should be and not be managed with herbicide.

4. MATERIALS AND METHODS

4.1. Sites

The study sites were two commercial sunflower fields with flat ground (average slope <1%)
situated at Monclova Farm, in Seville province (southern Spain, central co-ordinates datum WGS84:
37.528N and 5.315W for field 1, and 37.524N, 5.318W for field 2). The sunflower crops were sown on
March 25", 2013, at 6 kg ha™ in rows 0.70 m apart, and emergence of the sunflower plants started
15 days after sowing. The sunflower fields had an area of approximately 1 ha each, and were
naturally infested by the broadleaved weeds Amaranthus blitoides S. Wats (pigweed), Sinapis
arvensis L. (mustard) and Convolvulus arvensis L. (bindweed), as well as Chenopodium album L.
(lambsquarters) in field 2. All these weed species can be controlled by the same type of herbicide.
Weed and crop plants were in the principal stage 1 (leaf development, four-six true leaves, codes 14-
16) from the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) extended

scale (Meier 2001).
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4.2, UAV flights: cameras and altitudes

The co-ordinates of each corner of the experimental fields were collected with GPS for
planning the flight route. Then, each flight route was programmed into the UAV software to allow
the UAV to attain every programmed altitude and required degree of image overlap. This imagery
was collected with two different cameras mounted separately in a quadrocopter UAV, model md4-
1000 (microdrones GmbH, Siegen, Germany, Fig. 1) on May 7" 2013 at two different altitudes: 30
and 60 m. A sequence of 30% side-lap and 60% forward-lap imagery was collected to cover the entire
area of the experimental sunflower fields corresponding to each flight mission cameras and altitudes
(Fig. 2). One of the cameras used was a low-cost digital visible camera, model Olympus PEN E-PM1
(Olympus Corporation, Tokyo, Japan), which acquires 12-megapixel images in true Red-Green-Blue
(RGB) colour with 8-bit radiometric resolution. The other sensor was a multi-spectral camera, model
Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA), which acquires 1.3-megapixel images
composed of six individual digital channels arranged in a 2x3 array that can acquire images with
either 8-bit or 10-bit radiometric resolution. This camera has user configurable band pass filters
(Andover Corporation, Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths
in the B (450 nm), G (530 nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm)
spectral regions. Detailed information about the configuration of the UAV flights and specifications of
the vehicle and the cameras can be found in Torres-Sanchez et al. (2013). The images taken with the
visible camera were used directly after downloading to the computer, but those taken with the
multi-spectral camera required pre-processing. This multi-spectral sensor acquires images in each
channel in raw format and stores them separately on six individual CF cards embedded in the
camera. Therefore, an alignment process was needed to group, in a single file, the six images taken
at each waypoint. The Tetracam PixelWrench 2 software (Tetracam Inc., Chatsworth, CA, USA)

supplied with the multi-spectral camera was used to perform the alignment process.

In the course of the UAV flights, a barium sulphate standard spectralon® panel (Labsphere Inc.,
North Sutton, NH, USA) of 1 x 1 m dimension was also placed in the middle of the fields to calibrate
the spectral data (Fig. 3). Digital images captured in each camera spectral channel were spectrally
corrected by applying an empirical linear relationship (Hunt, Jr. et al. 2010). Equation coefficients
were derived by fitting digital numbers of the multi-spectral images located in the spectralon panel

to the spectralon ground values.
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Figure 1. Microdrone MD4-1000 with the multispectral camera (6 channels) embedded flying over one the

sunflower experimental fields.

Figure. 2. a) Screen shot of the set of overlapped images taken with UAV flying at 30 m altitude equipped with

the still visible camera in Field 1 (1 ha surface); b) Resulting orthomosaicked imagery.
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Figure 3. a) Partial view of the ortho-mosaicked imagery at 30 m altitude (sunflower field 2), showing the
sunflower rows, the spectralon (white square placed between two sunflower rows at the bottom-left), some
patches of weed infestation and some of the 49 1x1 m square frame; b) Detail of vector file created for every 1
m x 1 m square frames (yellow); c) Detail the vector file created for the sunflower crop (green) and weed (violet)

classes in one the 49 square frames.

4.3. Image mosaicking

Image mosaicking is an important task prior to image analysis and consists of the combination
of the sequence of overlapped imagery by applying a process of mosaicking using Agisoft PhotoScan
Professional Edition (Agisoft LLC, St. Petersburg, Russia). On the day of the UAV flights, a systematic
on-ground sampling procedure was conducted, which consisted of placing 49 1x1 m sampling areas,
or frames, regularly distributed throughout the two experimental fields according to a representative
distribution of weed infestation in the experimental fields (Fig. 3). All the frames were georeferenced
and, of the 49 frames, 12 were utilised as artificial terrestrial targets in order to perform the imagery
ortho-rectification and mosaicking process. All of the 49 frames were also employed later in the
validation of the OBIA procedure for the weed discrimination, as explained in the evaluation of the
OBIA algorithm performance section. The mosaicking process had three principal steps for each field:
1) image alignment, i.e., the software searches for common points in the images and matches them,
in addition to finding the position of the camera for each image and refining camera calibration
parameters, 2) construction of image geometry based on the estimated camera positions and images
themselves to produce a 3D polygon mesh representing the overflow areas was built by PhotoScan,
and 3) projection of individual images once the geometry was built for ortho-photo generation. The

resultant ortho-mosaicked images must show a high-quality landscape metric and an accurate
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sunflower row matching between consecutive images in order to guarantee good performance of the

subsequent segmentation and classification analyses.

4.4, OBIA algorithm

The OBIA procedure designed for the weed mapping objectives was developed using the
commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany). This OBIA
procedure was based on an algorithm for weed mapping in early-season maize fields fully described
in previous work by our research group (Pefia et al. 2013), though that work was conducted using
single imagery, whereas the procedure presented herein includes some relevant variations and
upgrades related to the unique characteristics of sunflower crops. The OBIA algorithm combined
object-based features such as spectral values, position, orientation and hierarchical relationships
among analysis levels. The algorithm was based on the position of crop and weed plants relative to
the crop rows, that is, every plant not located on the crop line was considered a weed. Therefore, the
algorithm was programmed to accurately recognise and detect the crop rows by the application of a
dynamic and auto-adaptive classification process, and then classified the vegetation objects outside
the rows as weeds. The detailed image analysis workflow is described by Pefia et al. (2013) and only

the variations and improvements are described in the following steps:

a) Field segmentation in to sub-parcels: ortho-mosaicked images taken with every camera and

flight altitude were segmented into small parcels whose size is user-configurable and, in this case,
was 5x5 m. Every sub-parcel was analysed individually to address the spatial and spectral variability

of the crop.

b) Sub-parcel segmentation in to objects: the sub-parcel images were sub-segmented using a

multi-resolution algorithm to create homogeneous multi-pixel objects corresponding to two classes:
vegetation (crop and weeds) and non-vegetation (bare soil) objects. Since these objects come from
the merger of spectrally and spatially homogeneous pixels, they contain new information that was
used in the next phases of the OBIA procedure. In this study, this new information corresponded to
1, 10, 0.6, 0.4, 0.5, 0.5 for band weights, scale, color, shape, smoothness and compactness,

respectively.

c) Vegetation objects discrimination: once the sub-parcels were segmented, the vegetation

(crop and weeds) objects were discriminated from the bare soil objects. Two spectral indices were
used: Excess Green (ExG, Woebbecke et al. 1995; equation 1) for the visible camera, and NDVI (Rouse
et al. 1973; equation 2) for the multi-spectral camera because both indices enhance spectral
differences of vegetation objects against the non-vegetation objects in UAV images, as previously

reported by Torres-Sanchez et al. (2014). The determination of the optimal ExG and NDVI values for
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vegetation discrimination was conducted by an adaptation to eCognition of an iterative automatic
thresholding by using Otsu’s method (Otsu 1979) adapted to UAV imagery for detection of three

herbaceous crops, including sunflower (Torres-Sanchez et al. 2015).

(2)

d) Sunflower crop-line detection: after classifying vegetation and bare soil objects, those

corresponding to vegetation were merged to determine the crop-row structure. Crop row
orientation was determined by an iterative process in which the image was successively segmented
in stripes with different angles (from 0 to 1809, with 12 of increasing ratio). This segmentation in
stripes was performed in a new level above the one with the classified vegetation in order to not lose
this information. Finally, the crop orientation was selected according to which stripes showed a
higher percentage of vegetation objects in the lower level. After a stripe was classified as a sunflower
crop-line, the separation distance between rows (0.70 m) was used to mask the adjacent stripes with

this distance in order to avoid classifying areas with potential high weed infestation as crop rows.

e) Weed-patches and weed-free maps: once the crop-rows were classified, the remaining

stripes were classified as crop-row buffers (linear segments in contact with the crop rows) and non-
crop areas in the upper segmentation level. Next, the hierarchical relationship between the upper
and the lower segmentation levels was used to discriminate crop from weeds. The vegetation objects
(in the lower segmentation level) that were located either under the crop rows or under the non-
crop area (in the upper segmentation level) were classified either as sunflower or as weeds,
respectively. The remaining vegetation objects located under the buffer area were classified
following a criterion of minimum spectral distance, i.e., an unclassified vegetation object was
assigned to the sunflower or the weed class depending on a higher degree of spectral similarity of
their ExG and NDVI values to their surrounding sunflower or weed objects for the visible and the

multi-spectral images, respectively.

f) Site-specific treatment maps: after mapping weed-patches and weed-free areas, the

algorithm built a grid framework at an upper level and applied a chessboard segmentation to
generate grids of user-configurable size. For example, in this investigation and according to the usual
characteristics of sunflower and weed-control machinery, the grid size was 0.5 x 0.5 m. Therefore, a
new hierarchical structure was generated between the grid super-objects at the upper level and the
sub-objects classified as sunflower, weeds or bare soil at the lower level. Next, the site-specific

treatment maps were created according to the weed coverage maps estimated previously.
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g) Maps at several weed thresholds: the weed coverage was mapped by identifying both

weed-free and weed-infested zones on the basis of seven thresholds with intervals of 2.5 from 0%
(herbicide post-emergence treatment must be applied just when there is presence or absence of
weed) to 15% (herbicide must be applied whether weed coverage > 15%) with an increase 2.5% per
threshold level. That is, seven herbicide treatment maps resulting from a given threshold value were
studied for every flight altitude and camera. Both the grid dimensions and the number and
thresholds of the weed infestation can be customised according to other cropping patterns and the

specifications required by the herbicide spraying machinery.

4.5. Evaluation of OBIA algorithm performance

For validation purposes, the ortho-mosaicked visible imagery collected at 30 m altitude was
used in both fields to quantify classification accuracy because this image had a high spatial resolution
which allowed the visual identification of weeds in each of the 49 sampling frames. That is, ground
reference observations were derived from the vertical remote images collected at 30 m altitude. In
addition, each sampling frame was georeferenced with a DGPS and was photographed to help to
visually identify the individual or group of weeds and create Figure 3c to compare the on-ground
weed infestation (observed weed density) with the outputs from image classification (estimated
weed density). Therefore, two vector shape files were created, one of them containing the 49 1 x1
m?2 sampling areas (Fig. 3b) and the other one including the crop and weeds existing in every frame
(Fig. 3c) by using Quantum GIS software (QGIS, GNU General Public License). These vector files were
then introduced in to the eCognition software to obtain the percentage of surface area occupied by
the three classes, i.e., sunflower, weeds and bare soil, in every square frame in order to generate the
reference data. Afterwards, the first vector file was overlapped with the classified image obtained by
the OBIA algorithm to calculate the relative area corresponding to each class in every frame. The
accuracy of the classified images was quantified by calculating the error matrix between weed
coverage mapping outputs and the field reference data in all sampling frames grouped by the weed
threshold (0 to 15% weed coverage) previously defined. The confusion matrix quantified the overall

accuracy (OA) of the classification in each threshold (Congalton, 1991).

5. RESULTS AND DISCUSSION

5.1. Spatial resolution and area covered by ortho-mosaicked imagery

The visible and multi-spectral cameras collected images with pixel sizes ranging from 0.0114 to
0.0162 m and from 0.0228 to 0.0327 m at flight altitudes of 30 and 60 m, respectively, as determined

by a proportional relationship between imagery spatial resolution and flight altitude (Table 1).
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Furthermore, slight changes in flight altitude during the flight are critical for low altitude image
acquisition because these variations can cause important differences in the ortho-image spatial
resolution. Weeds can be present in the field as small or large patches, so the spatial resolution of
the image must be considered accordingly (Figure 4). If the objective is the detection of small weed
patches, the pixel size could be 0.01 — 0.03 m which corresponds to flight altitudes of 30 and 60 m for
the visible camera and 30 m for the multi-spectral camera. However, when a weed patch is larger,
the UAV images could have a pixel size larger than 0.03 m, which corresponds to 60 m flight altitude

in the multi-spectral camera.

Table 1. Image spatial resolution, flight length and number of images per hectare as affected by flight altitude

and type of camera.

Camera Flight altitude Flight length (m:s) # Images Pixel size (m)
(m)
Visible (RGB*) 30 11:56 42 0.0114
60 5:41 12 0.0228
Multispectral 30 28:00 117 0.0162
(RGB+NIR*) 60 11:14 35 0.0327

*RGB: Red, Blue Green, Near-Infrared

The number of images and the flight length needed to cover the entire study area increased
from 42 to 117 images and from 12 to 28 minutes for the visible and the multi-spectral camera,
respectively, at 30 m altitude. A similar trend was observed at 60 m altitude. The different spatial
resolutions and area covered for the visible and multi-spectral cameras at the same flight altitude
resulted from differences in the technical specifications of each camera; i.e., the camera’s focal
length and sensor size affect the extent of area covered for a given sensor, and the pixel size of the
sensor (measured in um) determines the relationship between flight altitude and spatial resolution
for a given sensor. Therefore, a decrease in the flying altitude reduces the area covered by each
single image, which results in an increase in both the sequence of images and the complexity of the
image mosaicking procedure to obtain an ortho-image covering the entire study area. Considering
these relationships between flight characteristics and camera types, the first decision to make when
the user defines the flight program is which combination of flight altitude and camera type is ideal to
keep the image spatial and spectral quality consistent to ensure weed detection and minimise the
operating time, given potential UAV battery limitations. These considerations need to be addressed
to design prescription control maps because early SSWM requires high accuracy geo-referencing in
agreement to the details of the crop, weeds and soil background classes when both kind of plants are

at very similar phenological stages and a repeating crop pattern is present.
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5.2. Classification of sunflower crop rows

Sunflower crop rows were detected and mapped with 100% accuracy in the ortho-mosaics, at
all flight altitudes and camera types, using the OBIA algorithm (Fig. 4). This was due not only to the
performance of this procedure but also to the high matching of crop-line continuity of ortho-imagery
during the mosaicking process. If mosaics were not accurate enough, crop rows would appear
broken, incorrectly geo-referenced and consequently, moved, which would affect further OBIA
classification. This algorithm was upgraded to incorporate the special characteristics of sunflower
crops and now includes relevant variations to previous versions, e.g., imagery was mosaicked to
study the whole fields to optimise the image analysis, and weed thresholds were considered in the
construction of site-specific treatment maps. Other authors have mosaicked imagery from other row
crops such as corn, although the objective was to determine the effect of topography on the rate of
cross-pollination (Haarbrink and Eisenbeiss 2008). However, they found that obtaining an accurate
ortho-image was difficult, but they did not need to map crop rows. Therefore, one of the critical
results of the work reported here was the robustness of both the mosaicking and OBIA methods
developed for crop-row classification and mapping. This is relevant for the successful detection of the

vegetation objects referred to weeds placed in the inter-row areas.

0 2 ﬁ 6 8
Meters

Fig. 4. a) Illustration (14 m x 8 m) of the ortho-mosaicked image taken with the still visible camera at 30 m
altitude, and b) corresponding weed seedling map using OBIA (green: sunflower rows; red: weeds; grey: bare
soil); c) lllustration of the ortho-mosaicked image taken with the multispectral camera at 30 m altitude, and d)

Corresponding weed seedling map using OBIA.
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5.3. Effect of cameras and flight altitudes on mapping of weed-patches and weed-free areas

The accuracy of weed-patch discrimination, as affected by flight altitude and camera using
seven threshold values, are shown in Figure 5 for both sunflower fields. The classification was over
grid units, not over pixels, therefore the accuracy was the percentage of frames correctly classified,
i.e., the number of correct frames as a percentage of the total number of sampling frames. The
threshold corresponding to zero means that the OBIA algorithm detects simply the presence or
absence of weeds, that is, a percentage of weeds greater than zero was detected in the inter-row
area, and consequently, all these weeds must be treated. A threshold of 15% means that at least 15%
of the inter-row area of every frame was infested; if a lower weed infestation is detected and

mapped, no treatment should be applied.
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Figure 5. Accuracy (%) of weed maps according to seven weed thresholds for the images collected with the still

visible and multispectral cameras collected at 30 m and 60 m altitude for (a) Field 1, (b) Field 2).

Both sunflower fields showed similar results and trends. Higher accuracies were observed with
the multi-spectral camera at both flight altitudes, the highest (approximately 100%) was recorded for
15% threshold, although satisfactory results from 2.5% and 5% thresholds were also obtained with
accuracies higher than 85% for fields 2 and 1, respectively. The lowest accuracies (ranging from 50 to
60%) were achieved with the visible camera at any flight altitude and 0% of threshold value although,
according to Thomlinson et al. (1999) who standardised the overall accuracy of 85% for minimum
established values, acceptable accuracies were also recorded from a 7.5% threshold for both fields.
Best accuracies were achieved for the higher thresholds because, normally, they imply the presence
of larger weed patches which are more easily detected by the OBIA algorithm. When analysing
frames with only 2.5% weed infestation, the most common situation is that the weed patches are
very small, and consequently, they are more difficult to discriminate. Analysing the flight altitude,
accuracies for the images taken with the visible camera at 60 m were higher than at 30 m for 10%
weed threshold for field 1 and 12.5% in field 2. A similar trend was observed with the multi-spectral

camera. Therefore, a higher altitude corresponds to higher accuracies for high weed thresholds in
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both fields. This indicated that, in a sunflower field with a high weed infestation, the UAV could be
programmed to fly at 60 m altitude and perform better than at 30 m, because the weed map would
have a satisfactory accuracy, while requiring fewer images per ha, thus improving both the flight time

and the mosaicking process.

Traditionally, ExG and NDVI indices have been widely used in mapping vegetation (190,000 and
330,000 results in Google for “remote sensing” plus “Excess Green”, and “NDVI”, respectively;
accessed August 2015), however, they were quite limited for mapping crop-rows and weeds using
pixel-based-image-analysis in the preliminary image analyses (data not shown). This is because
reflectance data are sensitive to canopy cover, and spectral data from crop and weed plants at early
phenological stage are rather similar and difficult to discern. The OBIA procedure developed has the
ability to build objects using several criteria of homogeneity, in addition to spatially accurate
information (e.g., position, orientation, hierarchical relationships among image analysis levels).
Figure 6 displays several illustrative examples of early, site-specific, post-emergence grid maps for
different scenarios at 30 m flight altitude, using both visible and multi-spectral cameras. They also
contain four thresholds and the spatial distributions of treated and untreated grids. For a wider weed
threshold, a lower weed-patch area was observed, and vice versa, consequently, the threshold value
has a direct effect on the percentage of the field to be treated (Figure 7). The herbicide savings
obtained were relevant for both cameras and altitudes in both fields, although they were higher in
field 2 due to the lower degree of weed infestation. The percentage of treated area was calculated to
be higher when using the multi-spectral camera because the weed patches were better

discriminated and the maps generated were more accurate than those from the visible camera.

That is, some weed patches present in the field were not correctly classified with imagery from
the visible camera, and as a result, no treatment was indicated. For example, using the multi-spectral
camera at 30 m altitude, a range of 3% to 23% of the field (i.e., 77% and 97% of untreated area)
could be treated for weed thresholds from 0 to 15%, corresponding to accuracies ranging from 74%
to 100% for field 2. On the other hand, using the visible camera at 30 m, a range of 3 to 9% of the
field (i.e., 92% and 97% of untreated area) could be treated for weed thresholds from 0 to 15%,
corresponding to accuracies from 63 to 94% for field 1. As Figure 6 shows, there are some parts of
the fields where there were clearly weed-free zones and where site-specific weed control equipment
was not needed, allowing not only the potential reduction of herbicide applications but also the
optimisation of fuel, field operating time and cost. Currently, accurate site-specific equipment for
farmers to implement site-specific weed management is available. In addition, collaborative efforts
have been conducted to develop autonomous and robotic tractors carrying different implements for

site-specific control of weeds and other pests using a high-level decision-making system. This system
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was designed to accurately manage the type of herbicide or dose level for other pesticides according
to a prescription map (Pérez-Ruiz et al. 2015).

a) (63%) | b) (71%) l

o) (86%) ' "
0 5 10 15 20
R — |\ eters

Figure 6. Several examples of maps showing the herbicide application area ( l ) obtained for 30 m altitude, and

using still visible camera (four upper figures) and multispectral camera (four bottom figures) for Field 2

corresponding to four weed thresholds: a) & e) 0% ; b) & f) 5%; c) & g) 10%; d) & h) 15%. The accuracy of every

weed map is showed in parenthesis.

178 Tesis doctoral



Variability of herbicide treatment maps

Flight Altitude (m)
30 60

Camera

— Visible

-+ - - Multispectral
40
304

20+

104

g
fo
g
< 2
£ ¥ 2
5] a
£
©
S 40
=
30
N
20

104

T J T T Y T T T X T T T
0 5 10 15 0 5 10 15
Weed Threshold (%)

Figure 7. Percentage of field surface requiring weed control in both sunflower fields based on seven weed

thresholds according by flight altitudes and cameras.

The spatial structure was also different in both fields, i.e., the weeds were distributed in
patches across all of field 1, but were more localised in a part of field 2. The extent of the weed-
infested area and its spatial distribution, as well as the adoption of weed thresholds, are crucial for
the design and implementation of early SSWM. In addition, Gibson et al. (2004) stated that farmers
would choose to treat weed-free areas rather than assume the risk of allowing weeds to go
untreated, and Czapar et al. (1997) reported several reasons to consider the use of thresholds, such
as crop competition, harvesting problems, weed seed production and seed bank replenishment, time
required to survey fields or even general field appearance. Analysing this latter work, the time spent
to explore fields was perceived to be a limitation for the acceptance of weed thresholds by 6% of
growers, while 26% of dealers and 39% of farm managers also identified it as a restraint. This could
be overcome by using the technology presented here based on a UAV since the time spent to acquire
1 ha of sunflower area was less than half an hour for any of the flight altitudes and cameras (Table 1).
Of course, the processing time for image analysis would have to also be considered, although once
the algorithm is developed, this time would be minimal for successive use in as many sunflower fields
as required. Field appearance was identified by 75 % of the dealers and 36% of growers as an
important limitation. This can be relevant if weeds of medium to large size are present in the
sunflower fields, as was the case in this study. Pigweed and lambsquarters are considered large

weeds, while mustard and bindweed are medium weeds according to the SEMAGI expert system
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developed for weed management in sunflower (Castro-Tendero and Garcia-Torres 1995). The
authors evaluated herbicide selection according to potential yield reduction from multi-species weed
infestations by assigning three size categories (small, medium and large) to weeds and relating the
percentage of sunflower losses to weed density and weed biomass. They concluded that the
subjective evaluation of farmers for weed infestation assessment usually considers the size of the
weed for herbicide decisions and this is in agreement with the results reported by Czapar et al.
(1997). Using SEMAGI and geostatistical tools, Jurado-Expdsito et al. (2003) reported the usefulness
of weed infestation maps for identifying the area exceeding the economic threshold to plan site-
specific spraying strategies; they obtained 61% herbicide reduction. Therefore, the site-specific
treatment maps considering the different thresholds shown in Figure 6 could help farmers to decide
on early SSWM operations without forgetting the subjective evaluation of their fields as an important
component of their decision making. For example, according to the previously mentioned limitations
found by land owners, it seems unlikely that they would choose the 15% threshold keeping treated
approximately 5% of both fields (Figure 6) and untreated most of the fields, particularly when these
areas subjectively would appear highly infested due to large size of weeds such as lambsquarters or

pigweeds.

Current investigations are focusing on improving the OBIA algorithm when a number of

specific field conditions, such as curved crop rows, are present in the fields.

6. CONCLUSIONS

Because the spatial structure of patchy distribution of weeds allows mapping of infested and
un-infested areas, the objectives were to detect patches of weeds at early phenological stages using
UAV imagery and to design a timely and efficient weed control program based on site-specific
herbicide treatments according to weed cover. A UAV equipped with RGB or multi-spectral cameras
flying at 30 and 60 m altitude was used to acquire a set of overlapped images. The spatial resolution
of the image, area covered by each image and flight timing were very sensitive to the flight altitude.
At a lower altitude using the visible camera, the UAV captured slightly finer spatial resolution
imagery than at the same altitude using the multi-spectral camera. However, the number of images
needed to cover the entire field at 30 m altitude with the visible camera was much lower than for the
multi-spectral camera, showing that it may be a limiting factor due to potential UAV energy
limitations. The overlapped images were ortho-mosaicked to generate imagery at very-high spatial
resolutions (pixels ranging from 0.0114 to 0.0327 m). An accurate and automated OBIA procedure
was developed to detect and map bare soil, crop-rows and weeds. Accurate site-specific herbicide

treatment maps were created according to different factors: flight altitudes, camera types and weed
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thresholds, and then relevant herbicide savings were calculated. This information can help to balance
spatial resolution, which depends on flying altitude and type of camera with decision-making to

calculate herbicide requirements and plan the overall weed management operations.
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1. RESUMEN

Las caracteristicas geométricas de los arboles cultivados como el area de copa proyectada, la
altura y el volumen de la copa, proporcionan informacidn muy util sobre el estado de la plantacidny
la produccion del cultivo. Sin embargo, la estimacion de estas variables suele ser hecha de manera
tradicional tras un duro y exhaustivo trabajo de campo, y aplicando ecuaciones que tratan a los
arboles como figuras geomeétricas, lo que produce resultados inconsistentes. Como alternativa, este
trabajo presenta un procedimiento innovador para calcular las caracteristicas tridimensionales de
arboles individuales y en seto aplicando dos fases consecutivas: 1) generacién de modelos digitales
de superficies con vehiculos aéreos no tripulados, y 2) uso de técnicas de anadlisis de imagen
orientado a objetos. Nuestro procedimiento produjo resultados satisfactorios tanto en plantaciones
de arboles individuales como en seto, llegando a un 97% de precision en la cuantificacion del drea de
copa proyectada y minimas desviaciones en las estimaciones de la altura y el volumen en
comparacion con las mediciones en campo. Los mapas generados por el procedimiento podrian ser
interesados para comprender las relaciones entre el crecimiento de los arboles y factores
relacionados con el terreno, o para optimizar las operaciones de manejo del cultivo en el contexto

de la agricultura de precisidn con relevantes implicaciones agro-medioambientales.

2. ABSTRACT

The geometric features of agricultural trees such as canopy area, tree height and crown
volume provide useful information about plantation status and crop production. However, these
variables are mostly estimated after a time-consuming and hard field work and applying equations
that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this
work presents an innovative procedure for computing the 3-dimensional geometric features of
individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface
Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis
techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-
row plantations, reporting up to 97% accuracy on area quantification and minimal deviations
compared to in-field estimations of tree heights and crown volumes. The maps generated could be
used to understand the linkages between tree grown and field-related factors or to optimize crop
management operations in the context of precision agriculture with relevant agro-environmental

implications.
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3. INTRODUCTION

The geometric measurements of the agricultural trees, such as tree height and crown volume,
serve to monitor crop status and dynamic, to analyse tree production capacity and to optimise a
number of agronomic tasks, such as water use, nutrient application, pruning operations and pest
management. Conventionally, the main tree dimensions are measured by hand after an intensive
field work and next the crown volume is estimated with equations that treat the trees as regular
polygons or by applying empiric models (West 2009). However, collecting this data at the field scale
is very time-consuming and generally produces uncertain results because of the lack of fit of the real
tree to the geometric models or to the great variability in orchards that can affect the suitability of
models based on in-field measurements. Among the technological alternatives, the Light Detection
And Ranging (LiDAR) laser scanners and the stereo vision systems by using terrestrial or remote-
sensed measurements are currently the most relevant (Rosell and Sanz 2012). However, these
techniques have also their own limitations in real tree orchards. On the one hand, although the
terrestrial devices are very precise to measure tree architecture (Fernandez-Sarria et al. 2013;
Moorthy et al. 2011; Rovira-Mas et al. 2008), they are inefficient in large spatial extents and are
difficult to use in hard-to-reach field areas. On the other hand, remote-sensed data collected with
piloted aircrafts and satellites do not often fulfil the technical requirements (e.g., sufficient spatial
resolution or number of stereoscopic pairs) needed to detect the 3-dimensional (3-D) characteristics

of agricultural trees in most cases (Rosell and Sanz 2012).

In recent years, a new aerial platform has joined the traditional ones: the Unmanned Aerial
Vehicles (UAV) or drones (Luo et al. 2014; Marris 2013). Several investigations (Zhang and Kovacs
2012) have demonstrated the advantages of the UAVs in comparison to airborne or satellite
missions regarding its low cost and greater flexibility in flight scheduling (Torres-Sanchez et al. 2014),
which make UAV technology a proper tool for farmers and researchers to monitor crops at the field
scale (Anderson 2014). In addition, the UAV can automatically flight at low altitudes and with large
overlaps, which permit the acquisition of ultra-high spatial resolution images (in the range of a very
few centimetres) and the generation of the Digital Surface Model (DSM) using automatic photo-
reconstruction methods that are based on the “Structure from Motion” approach for 3-D
reconstruction. As a consequence, recent investigations have focused on the generation of DSM with
UAVs (Nex and Remondino 2014) and its interpretation over agricultural areas (Bendig et al. 2014;

Diaz-Varela et al. 2015; Zarco-Tejada et al. 2014).

However, in order to take full advantage of this technology, another primary step involves the

implementation of robust and automatic image analysis procedures capable of retrieving useful
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information from the images. To reach a high level of automation and adaptability, we propose the
application of object-based image analysis (OBIA) techniques. OBIA overcomes some limitations of
pixel-based methods by grouping adjacent pixels with homogenous spectral values after a
segmentation process and by using the created “objects” as the basic elements of analysis (Blaschke
et al. 2014). Next, OBIA combines spectral, topological, and contextual information of these objects
to address complicated classification issues. This technique has been successfully applied in UAV
images both in agriculture (Diaz-Varela et al. 2014; Pefia et al. 2013), grassland (Laliberte and Rango
2011) and urban (Qin 2014) scenarios.

In this article, we report an innovative procedure for a high-throughput and detailed 3-D
monitoring of agricultural tree plantations by combining UAV technology and advanced OBIA
methodology. After the DSM generation with UAV images, this procedure automatically classifies
every tree in the field and computes its position, canopy projected area, tree height and crown
volume. For training and testing purposes, we used olive plantations as model systems and selected
several sites with a variable degree of tree shapes and dimensions, both in conventional single-tree
and in row-structured plantation systems. Efficacy of the procedure was assessed by comparing
UAV-based measurements and in-field estimations. In addition, effects of spectral and spatial
resolutions on the entire process were evaluated in each type of plantation by performing different
flight missions in which two flight altitudes and two sensors (a conventional low-cost visible-light
camera and a 6-band multispectral color-infrared camera) were separately tested. Finally, time

required by each stage of the full process was weighted according to the flight mission performed.

4. MATERIALS AND METHODS

The full procedure consisted on three main phases (Fig. 1): 1) the acquisition of very high
spatial resolution remote images with an unmanned aerial platform, 2) the generation of
orthomosaics and DSMs by applying close-range photogrammetry methods, and 3) the application
of advanced object-based algorithms to analyse the images and to retrieve the position and the
geometric features of each tree or tree-row in the whole field. Next, each stage is described in

detail.

4.1. Description of the UAV and the sensors

The UAV used in this investigation was a quadrocopter with vertical take-off and landing
(VTOL), model MD4-1000 (microdrones GmbH, Siegen, Germany) (Fig. 2a). This UAV is equipped with
four brushless motors powered by a battery and it can be manually operated by radio control (1000

m control range) or it can fly autonomously with the aid of its Global Position System (GPS) receiver
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and its waypoint navigation system. The VTOL system makes the UAV independent on a runway,

which allows the use of the UAV in a wide range of different situations, e.g., even on steep olive

orchards.
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Figure 1. Flowchart of the entire procedure for 3-D monitoring of agricultural tree plantations by combining
UAV technology and object-based image analysis. (Abbreviations: 3-D (three dimensional); GPS (Global Position
System); UAV (Unmanned Aerial Vehicle); GCP (Ground Control Point); DSM (Digital Surface Model); G (Green
band); NIR (Near Infra-Red band); OBIA (Object-Based Image Analysis).

Two sensors were separately tested: 1) a still point-and-shoot visible-light camera, model
Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) (Fig. 2b), and 2) a six-band multispectral
camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA) (Fig. 2c). On the one
hand, the visible-light camera produces 12.2 megapixel format (4,032 x 3,024 pixels) images in true
colour (Red, R; Green, G; and Blue, B, bands) with 8-bit radiometric resolution, which are stored in a
secure digital SD-card. It is equipped with a 14-42 mm zoom lens, although it was fixed at 14 mm
focal length for these works. The camera’s sensor size is 17.3 x 13.0 mm and the pixel size is 0.0043
mm. These parameters are needed to calculate the image resolution on the ground or, i.e., the
ground sample distance (GSD) as affected by the flight altitude (equation 1). On the other hand, the
multispectral camera is a lightweight (700 g) sensor composed of six individual digital channels
arranged in a 2x3 array. Its sensor size is 6.66 x 5.32 mm and the pixel size is 0.0052 mm. Each
channel has a focal length of 9.6 mm and a 1.3 megapixel (1,280 x 1,024 pixels) CMOS sensor that
stores the images on a compact flash CF-card. The images were acquired with 8-bit radiometric
resolution. The camera has user configurable band pass filters (Andover Corporation, Salem, NH,

USA) of 10-nm full-width at half-maximum and centre wavelengths at B (450 nm), G (530 nm), R (670
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and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm). More details about the sensors and

UAV configuration can be consulted in (Torres-Sanchez et al. 2013).

(1)

Figure 2. The quadrocopter UAV, model md4-1000, taking off in one of the studied fields (a) and the sensors

used in this investigation: the visible-light camera (b) and the multispectral camera (c).

4.2.  Study sites and UAV flight missions

We used olive plantations as model systems to develop and evaluate our procedure and
selected four different sites with a variable degree of tree shapes and dimensions, as well as with
two different plantation patterns: two fields with a traditional single-tree distribution (Fig. 3a,c) and
two fields with the trees in rows (Fig. 3b,d). The fields were identified by four different letters to
facilitate the reading of the article, as follows: field A: located in the public research farm “Alameda
del Obispo” in Cordoba, field B: a private farm located in Adamuz (Cordoba province), field C: a
private farm located in Pedro Abad (Cordoba province), and field D: a private farm located in

Villacarrillo (Jaen province).
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Figure 3. On-ground (top) and aerial (down) views of two plantations studied in this investigation with single-

tree (a, c) and tree-row (b, d) patterns, respectively.

Different flight missions with the two sensors mounted independently in the UAV were
performed in every field (Table 1). In the private farms, the flights were authorized by a written
agreement between the farm owners and our research group. On the one hand, the UAV route was
configured with the visible-light camera to continuously take photos at an interval of 1 second,
which resulted to a forward lap of 90% at least. In this case, the UAV flied in line with a side lap of
60%. With the multispectral camera, the UAV route was programmed to stop in every acquisition
point due to camera technical limitations for continuum shooting (slower processing speed). In this
case, the images were taken with a side lap and a forward lap of 60%. In all flight missions, the image
overlapping was high enough to apply the 3-D reconstruction procedure in the next stage. According

to these flight configurations, the visible-light camera can cover roughly 10 ha and 20 ha and the
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multispectral camera roughly 3 ha and 6 ha, at 50 and 100 m altitude, respectively, in each regular

30-minutes flight.

Table 1. Description of the tree plantations and of the flight operations performed in each field.

Tree plantation Flight operation®
Field ID Location® Plantation pattern (tree spacing) Flight date Sensor Flight altitude
(m)
A Cordoba (37.855N, Single-trees (7x7 m) 21% Aug, 2013 Visible-light 50, 100
4.806W)
Multispectral 50
B Adamuz (37.992N, Single-trees (8x8 m) 21% Feb, 2014 Visible-light 50,100
4.505W)
Multispectral 50,100
C Pedro Abad Tree-rows (3.75x1.3 m) 21% Feb, 2014 Visible-light 50,100
(37.960N, 4.466W)
Multispectral 50,100
D Villacarrillo (38.113N, Tree-rows (8x4 m) 12% May, 2014 Visible-light 50,100
3.163W)
Multispectral 100

! Lat/Lon coordinate system; Datum WGS84.
2 Multispectral images of the field “B” at 100 m altitude and of the field “D” at 50 m altitude were not taken due to technical
problems.

The acquired images had different spatial resolutions according to the technical characteristics
of the sensor and to the flight altitude as follows (equation 1): 1) the visible camera flying at 50- and
100-m altitudes produced RGB images with a GSD of 1.53 and 3.06 cm, respectively; and 2) the
multispectral camera flying at 50- and 100-m altitudes produced multispectral images with a GSD of
2.71 and 5.42 cm, respectively. These experiments aimed to assess the influence of spatial and
spectral resolution on the accuracy of the DSM generation and on the performance of the OBIA tasks
(see sections 2.3 and 2.4, respectively). The flight routes fulfilled the requirements that were
established by the Spanish National Agency of Aerial Security for maximum flight altitude allowed for

UAVs, which is currently fixed at 120 m (MPR 2014).

4.3, Generation of the ortho-mosaics and of the Digital Surface Models (DSM)

Mosaicking and DSM generation were performed using the Agisoft PhotoScan Professional
Edition software (Agisoft LLC, St. Petersburg, Russia). The mosaicking process was fully automatic
with the exception of the manual localisation of a few ground control points that were taken in each
field. The entire automatic process involves three principal stages: 1) aligning images, 2) building
field geometry, and 3) ortho-photo generation. First, the camera position for each image and the
common points in the images were located and matched, which refined the camera calibration
parameters. Next, the DSM was built based on the estimated camera positions and the images

themselves. This second stage needs high computational resources and it usually takes a long time in
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the case of using many high-resolution images. Finally, the separated images were projected over
the DSM, and the ortho-mosaic was generated. The DSM is a 3-dimensional polygon mesh that
represents the overflown area and reflects the irregular geometry of the ground and the tree
crowns. The DSMs were joined to the ortho-mosaics as Tiff files, which produced a 4-band multi-
layer file from the visible-light camera (RGB bands and the DSM) and a 7-band multi-layer file from
the multispectral sensor (6 bands and the DSM). A more detailed explanation of the PhotoScan

functioning is given in (Dandois and Ellis 2013).

4.4, Object-based image analysis (OBIA) procedure

The multi-layer files that were generated in the previous stage were analysed with an original
OBIA algorithm that was developed with the eCognition Developer 9 software (Trimble GeoSpatial,
Munich, Germany). This algorithm is auto-adaptive to any remote image with independence of the
plantation pattern and it can be apply with minimum user interference. The algorithm is composed

of a number of rules that are grouped in four consecutive main phases (Fig. 4):

1) Image segmentation: The image was segmented into objects using the multiresolution
segmentation algorithm (Baatz and Schape 2000) (Fig. 4a). For a better delineation of the trees, the
layers in which the trees were more prominent, i.e., the DSM layer and either the Green band from
the visible-light images or the NIR band from the multispectral image, were weighted to 1, and the
remaining layers were weighted to 0. The scale parameter varied in the function of the sensor and
the spatial resolution, and the remaining segmentation parameters were 0.6, 0.4, 0.5 and 0.05 for

colour, shape, smoothness and compactness, respectively (Fig. 4b).

2) Image classification: The classification task took advantage of the capacity of certain
vegetation indices to enhance the discrimination of vegetation targets. In this investigation, the
Excess Green index (ExG, equation 2, (Woebbecke et al. 1995)) for the visible-light images and the
Normalised Difference Vegetation Index (NDVI, equation 3, (Rouse et al. 1973)) for the multispectral
images were calculated. Then, a threshold for vegetation discrimination was established using Otsu’s
automatic thresholding method (Otsu 1979) as adapted to the OBIA framework (Torres-Sanchez et
al. 2015). After the application of the threshold to the vegetation indices values, vegetation was
isolated from bare soil (Fig. 4c). Next, the herbaceous vegetation surrounding the trees was isolated
considering the DSM layer and applying the criterion of vegetation with low height compared to
surrounding soil (Fig. 4d). The vegetation pixel height was derived from the relative difference of the
DSM values between the pixels of each individual vegetation object and the pixels of the bare soil

surrounding each object. In this step, only the bare soil pixels that were very close to each
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vegetation object were specifically selected as the baseline for height calculation, eliminating

potential errors due to the terrain slope (Fig. 4e).

o0 G _ R B
ExG—2g—r—b,belngg—(R+G+B),r (R+G+B)’b R+G+B) (2)
NDW:MB)

(NIR +R)

3) Computing and mapping of the 3-D features (canopy width, length and projected area, tree
height and crown volume) of each individual tree or tree-row: The vegetation objects that were
classified as trees in the previous stage were merged to compound each individual tree or tree-row.
This merging operation was performed in a new level created over the original segmentation.
Therefore, a hierarchical segmentation structure was generated, in which the merged objects (trees
or tree-rows) were in the upper level and the segmented objects were in the bottom level. At this
point, the geometric features such as width, length and projected area of the tree canopy and the
tree height were automatically calculated by applying a looping process in which each tree or tree-
row was individually identified and analysed. Next, the crown volume was calculated by integrating
the volume of all of the individual pixels (bottom level) that were positioned below each tree or tree-
rwo (upper level) in the hierarchical structure. In this operation, the height and area of every tree
pixel were multiplied to obtain the pixel volume, and the tree volume was subsequently derived by
adding the volume of all of the pixels below each olive tree or tree-row. This step was performed at
the pixel level, which permitted dealing with the irregular shape of every tree or tree-row and
consequently avoiding the errors that are usually produced in empirical estimations due to inexact

comparisons of the trees or tree-rows to regular solids.

4) Delivery of the map outputs: After computing the tree geometrical features, the OBIA
procedure automatically exported such information as vector (e.g., shapefile format) and table (e.g.,

excel or ASCII format) files for further analysis and applications.
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Figure 4. Partial views of each phase of the OBIA procedure developed to classify agricultural-tree plantations:
a) Mosaicked image composed of the spectral information (in this example, multispectral bands) and the DSM
data, b) segmentation output, c) classification of the vegetation objects (in green color), d) removal of the
herbaceous vegetation, e) identification of the bare-soil area (in orange color), which is used as the base line to
calculate the height of the neighbouring vegetation objects (in dark green color), and f) classification of the
trees (in bright green color), herbaceous vegetation (in dark green color) and bare soil (in red color) based on

the spectral information and the vegetation height.
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4.5, Training and validation of the methodology

This investigation was conducted following a training/validation procedure. The training stage
was performed in the field A and the field C as representative of single-tree and tree-row
plantations, respectively, and consisted of testing the flight configuration and image acquisition. This
stage also involved visual tests of image quality and evaluation of the aptitude of the mosaicked
images and their associated DSMs to build the tree structures and to retrieve their geometric
features. In addition, we also developed the OBIA algorithms in the training fields. Next, the
validation procedure was performed in the field B and the field D as representative of single-tree
and tree-row plantations, respectively. Three geometric features, namely the projected area of the
canopy, tree height and crown volume, were evaluated by comparing the UAV-estimated values and

the on-ground values observed in the validation fields.

In the case of the projected area, the observed values were derived by manually delineating
the shape of all of the trees or tree-rows over the mosaicked images that were generated in each
flight route. Then, the classification outputs that were generated by the OBIA algorithms were
overlapped with the manual classifications to compute the area of coincidence for each tree or tree-

row and to calculate the overall classification accuracy in each scenario (equation 4).

Overall Classification Accuracy (%) =100 x (Area correctly classified ) (4)

Totalarea

In the case of height and volume quantification, 24 trees in the field B and 30 trees in the field
D were selected for validation. All of the trees were georeferenced with a GPS device to locate their
position in the mosaicked images. In addition, the tree height and canopy diameter were manually
measured with a ruler, and the crown volume was estimated assuming an ellipsoid form and
applying a validated method (equation 5) for olive tree geometric measurements (Pastor 2005).
However, the crown volumes were not calculated in the field D because its row structure impeded

the identification of tree edges in the longitudinal axis.

(Canopy length axis) + (Canopy widh axis)
2

j x (Tree height ) (5)

Crown volume (m*) = % X (

The efficacy of the entire procedure (mosaicked images, DSM layer and OBIA algorithms) to
measure the tree height and crown volume of individual trees was assessed by comparing the UAV-
estimated values and on-ground values that were observed in the 54 validation trees. Then, the
overall accuracy and its associated average error (equation 6) that were attained in each scenario

(two validation fields and several flight altitudes), as well as the root mean square error (RMSE) and
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correlation coefficient that were derived from the regression fit, were calculated to quantify the

influence of each factor on monitoring each studied tree variable.

Z|(UAV — measured Feature, ) — (Field — observed Feature, )|

Average Feature Error = = (6)
Number of trees

5. RESULTS AND DISCUSSION

5.1. Quality of ortho-mosaic and DSM generation

The figs 5a and 5b show the 3-D representation generated in two fields with single-tree and
tree-row systems, respectively. Each image was composed of two products: the ortho-mosaic and its
associated DSM. Both plantations were modelled in 3-D with high accuracy, showing the irregular
shape of the trees and of the tree-rows including typical crown gaps and branch distribution, which
allowed computing tree volume regarding the real crown shape. The ortho-mosaics were
successfully created in all the studied scenarios (four fields, two sensors and two flight altitudes),
with the exception of the images that were collected with the multispectral sensor over the tree-row
plantations. However, the quality of the DSMs was variable as affected by the sensor type and the
tree plantation system (Table 2). With the independence of the flight altitude, the DSMs were
satisfactorily generated in both single-tree plantations (field A and field B) with the multispectral
sensor and in both tree-row plantations (field C and field D) with the visible-light camera. In fact,
more than 96% of the trees in the single-tree fields and the 100% of the rows in the tree-row fields
were correctly modelled, and only some mixing effects were observed after the image analysis
process in the DSMs that were generated with the visible-light images that were captured at a 100-
m altitude. In contrast, the DSM generation procedure partially failed with the visible-light images
collected in the single-tree fields (mainly in the field B). In these cases, the 3-D structure of some of
the trees was not built and, consequently, the mosaicked images showed some blurry areas. On the
one hand, we observed that the procedure for 3-D reconstruction with the visible-light images was
more problematic in the trees with a low canopy density. As a consequence, we hypothesized that
the low colour contrast between some trees and their surrounding bare soil area was the reason of
the errors in the generation of the DSM in the separated-tree cropping system scenarios. In fact,
greater errors were obtained in the field B, where the colour of many trees was similar to that of
bare soil, than in the field A, where a greater contrast between the trees and the bare soil was
observed. On the other hand, the multispectral sensor totally failed in both row-tree plantations due
to certain difficulties of the 3-D reconstruction software to find common points during the image

alignment process. We attributed these errors to insufficient spatial resolution of this sensor in
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order to match similar points in overlapped images taken over homogeneous targets, as we also

observed in additional investigations on herbaceous crops.

Figure 5. 3-D representation of a single-tree plantation generated with a multispectral sensor (a) and of a tree-

row plantation generated with a visible-light camera (b).

Table 2. Number and percentage of trees or tree-rows correctly reconstructed during the DSM generation

procedure as affected by the sensor type and the flight altitude in each of the studied fields.

Trees or tree-rows correctly

reconstructed
Field Plantation pattern Sensor Fligh altitude (m) Number %
ID
Visible-light 50 65 73
A Single-trees 100 86 97
Multispectral 50 89 100
Visible-light 50 27 20
100 74 55
B Single-trees .
Multispectral 50 135 100
100 130 96
Visible-light 50 9 100
100 9 100
C Tree-rows "
Multispectral 50 0 0
100 0 0
Visible-light 50 10 100
D Tree-rows 100 10 100
Multispectral 50 10 100

5.2.  Classification accuracy as affected by the flight altitude

Jorge Torres Sanchez 199



Capitulo 7

After building the 3-D models of the four studied fields, we applied our original OBIA
procedure in order to classify the remote images (Fig. 6) and to measure the geometric features of
each individual tree or tree-row, whichever applies. Our OBIA procedure was designed to auto-
adapt, with minimum user intervention, to any agricultural tree plantation with a similar crop
patterns (e.g., citrus groves, vineyards or Prunus orchards). The algorithms were submitted to a
training/validation procedure, in which the images collected in the fields A and C were used for
creating and training the OBIA algorithm and the images collected in the fields B and D were used to
validate the results (section 2.5). The classification procedure achieved an overall accuracy of
approximately 95% or even higher in the most cases (Table 3). With the independence of the sensor
used and the field studied, minor differences in the classification accuracy were observed for
different flight altitudes. The visible-light and the multispectral sensors captured images with pixel
sizes ranging from 1.5 cm to 3.1 cm and from 2.7 cm to 5.4 cm at the studied flight altitudes,
respectively. The high spatial resolution imagery that was generated by both sensors, even at a 100-
m flight altitude, permitted the correct identification of the tree canopy, which produced a
successful classification in every case. Generally, at least four pixels are required to detect the
smallest objects within an image (Hengl 2006). Accordingly, the sensors that were used in this
investigation were adequate for analysing individual tree or tree-row structures with a minimum
dimension of approximately 10x10 cm or even smaller if the flight altitude was lower than 100 m.
Therefore, these results recommend collecting the UAV remote images at the highest altitude
allowed by the aviation regulations (in Spain, 120 m maximum (MPR 2014)) in order to capture the
maximum ground area in each image and to consequently optimise the flight mission length and

image ortho-mosaicking process.

Table 3. Overall accuracy attained by the OBIA algorithm in the classification stage.

Field Plantation Sensor Flight Altitude (m)  Overall Accuracy (%)
ID pattern
A Single-trees Multispectral 50 97.4
Multispectral 50 96.9
B Single-trees
100 94.5
Visible-light 50 93.1
C Tree-
ree-rows 100 86.3
Visible-light 50 96.4
D Tree-rows
100 95.7
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I Bare soil
[ Olive tree
I Herbaceous vegetation

Figure 6. Classification outputs generated by the OBIA algorithm developed in this investigation. Our innovative
algorithm automatically classified individual trees (a, b) or tree-rows (c, d), herbaceous vegetation and bare soil
areas and, simultaneously, computed the geometric features (projected canopy area, tree height and crown

volume) of each individual tree or tree-row in the whole plantation.

5.3. Quantification of the tree geometric features (canopy area, tree height and crown volume)

5.3.1. Canopy area

The relation between canopy projected area classified by the OBIA procedure and the
observed values at the 50-m-altitude images was close to the 1:1 line (R?=0.94, RMSE=1.44 m?),

although it tended to a subtle underestimation of the trees or groups of nearby trees larger than 20
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m? (Fig. 7). With the 100-m-altitude images, this relationship was also close to the 1:1 line, but the
correlation coefficient (R’=0.90) and the RMSE (2.14 m?) was slightly worse than at the ones
reported at 50-m-altitude. The canopy areas of all the trees were estimated with minimum errors in
the images at both flight altitudes, which demonstrated algorithm robustness. In fact, the tree
canopy edges were automatically defined with high precision even in zones with surrounding
herbaceous vegetation, where discriminating vegetation types is a complicate task due to their
similar spectral responses. In this case, tree classification was facilitated by incorporating the DSM
information (i.e., pixel height) as an input layer in the segmentation procedure and, afterwards, by

using an automatic height-based thresholding method for identifying the tree canopy edges.

Flight altitude

35 50 100
y=0.9343x+0.7094 "] y=1.0313x-0.5557
1 R2=0.94 R2=0.90
304 RMSE=1.40 RMSE=2.14

25+

20+

UAV-detected area (m?)

0 - T T T T T T - L] T ¥ T * T ] T ¥ T X T 2
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35
Observed area (m?)

Figure 7. Classified vs. observed tree projected area after applying the OBIA algorithm in the remote images
collected at 50 m (left) and 100 m (right) of flight altitude over the field B. The solid line is the fitted linear

function and the dotted line is the 1:1 line.

5.3.2. Tree height

Tree height was estimated with unprecedented accuracy, reporting averaged errors in the
range of 0.17-0.18 m from the images captured with the visible-light camera and of 0.22-0.53 m
from the images captured with the multi-spectral camera (Table 4). Previous investigations with a
similar image-based UAV technology reported RMSE values on tree height estimations in the range
of 0.33-0.39 m (Zarco-Tejada et al. 2014) and of 0.44-0.59 m (Kattenborn et al. 2014) in olive-tree
and palm-tree plantations, respectively. An essential difference with these investigations refers to
the image analysis technique used to compute the tree parameters in each case. We implemented

an OBIA algorithm instead of the pixel-based filtering algorithms applied in (Kattenborn et al. 2014;
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Zarco-Tejada et al. 2014). OBIA has various advantages for analysing high-resolution images where
the pixels can be aggregated to create new elements (e.g., trees) with an evident spatial pattern.
Here, the OBIA algorithm identified all the trees in the plantation with very high accuracy (table 3)
and treated each of the trees as an individual object. This tree-by-tree procedure can exactly select
the local maxima (in the tree apex) and minima (in the surrounding on-ground base-line) extreme
pixels that are used by the OBIA algorithm to calculate the height of each individual tree. By
comparing the on-ground observed and the UAV-measured height values, the coefficient of
determination was 0.90 and 0.84 for the UAV-images captured at 50-m and 100-m flight altitudes,
respectively (Fig. 8). The regression line was very close to the 1:1 line with the results derived from
the images captured at 50-m flight altitude, although some under-estimation was obtained from the
100-m-altitude images, particularly in the case of trees shorter than 4 m height. In general, the UAV-
based estimations of the tree heights only deviated a few centimetres from the on-ground
measurements. However, these deviations were greater in the shortest trees and using the highest
flight altitude, which likely denotes a positive relationship between both variables. For this
application, these errors are tolerable but, if required, vertical estimations could be improved by
reducing the flight altitude according to tree heights, although further investigation is needed to

determine the optimal flight configuration for image-based 3-D photo-reconstruction.

Table 4. Tree height quantification errors (average and standard deviation) accounted in the validation fields.

Tree height quantification error

Field ID Plantation Sensor Flight Altitude Averaged Standard
pattern (m) deviation
Multispectral 50 0.22m  (6.32%) 3.41
B Single-trees
100 0.53m (15.55 %) 8.12
Visible-light 50 018m  (3.75%) 3.06
D Tree-rows
100 0.17m  (3.54%) 3.16

5.3.3. Crown volume

A precise measurement of tree projected area and tree height was crucial for modelling tree
crowns and consequently for computing tree volume in the next phase. The relationship between
the UAV-based and the on-ground-based volume estimations of the individual trees is shown in the
fig 9. The coefficient of determination was 0.65 and 0.63 with the 50- and the 100-m-altitude
images, respectively. In this case, the differences between both variables do not denote real errors
of the UAV-based measurements because the on-ground-based values were derived by applying the
conventional geometric equation that considers the trees as ellipsoid forms (West 2009), which can

produce inexact on-ground estimations. On the contrary, the 3-D products derived in this
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investigation reconstruct the irregular shape of the tree crown, which hypothetically allows better

estimations of tree volume than those ones derived from on-ground measurements. In any case,

similar magnitudes were observed between both approaches with independence of the flight

altitude considered; i.e., the trees that were identified as bigger on the ground were also quantified

as trees with larger volumes by the UAV-based procedure and vice versa (Fig. 10).
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Figure 8. Comparison between on-ground observed and UAV-estimated tree height values measured from the

images captured at 50 m (left) and 100 m (right) of flight altitude, respectively. The results in the tree-row

plantations (blue dots) were obtained with the visible-light camera and in the single-tree plantations (red dots)

with the multispectral sensor. The solid line is the fitted linear function and the dotted line is the 1:1 line.

UAV-detected volume (m?)

40+

35

25+

20

50

Flight altitude
100

30

T T T T
35 40 5 10 15 20 25 30 35 40
On-ground observed volume (m®)

Figure 9. Comparison between on-ground-based volume estimations and UAV-based tree volume values

computed from the UAV-images captured at 50 m (left) and 100 m (right) of flight altitude, respectively. The

UAV-based values were calculated by integrating the volume of all the pixels within each image-object
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corresponding to each individual tree, which permitted dealing with the irregular shape of every tree and
consequently avoiding the errors due to inexact comparisons of the trees to regular solids. The UAV-based
values were compared to on-ground estimations, which were calculated after manually measuring tree canopy

diameter and tree height with a ruler and then applying the ellipsoidal geometric model.
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Figure 10. Spatial position and crown volume computed in the validation field B by using UAV-images captured

at 50 m (green circles) and at 100 m (dotted circles) of flight altitude with the multispectral sensor and their

relative comparison to the on-ground estimations of the validation trees (solid circles).

5.4. Detailed map information provided by the OBIA algorithm

After extracting the geometric features of every individual tree or tree-row in the entire
plantations, an additional advantage of the OBIA procedure was its capacity to automatically

compute such information at different levels and export accurate data as vector (e.g., shapefile
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format) and table (e.g., excel or ASCII format) files. On the one hand, global information at the field
level includes field dimensions, the number of trees, averaged tree spacing and tree statistical data
(e.g., medium and standard deviation of tree heights and crown volumes). On the other hand, spatial
data at the tree or tree-row level includes the central coordinates, dimensions of the main length
and width axes, canopy projected area, tree height and crown volume (Table 5). This spatial
information allows creating maps of each one of the geometric features studied (Fig. 10), which
show the heterogeneity of the whole plantation and the zones in the field with different tree

growth.

Table 5. A sample of the output data file computed at the tree level. Accurate spatial data of each individual
tree was automatically computed by the OBIA procedure in a field with 135 trees. In this case, the remote

images were taken at 50 m flight altitude with a multispectral sensor.

Tree ID Position’ Geometric features
X Y Length axis Width axis Projected area Height Volume
(m) (m) (m?) (m) (m3)
1 367,769 4,206,048 4.78 4.00 13.21 3.85 21.84
2 367,774 4,206,048 5.15 4.72 12.98 1.67 11.66
3 367,777 4,206,042 2.51 1.59 2.57 3.25 5.47
135 367,784 4,206,050 4.59 4.34 12.91 3.49 33.21

! UTM coordinate system (zone 30N); Datum WGS84.

5.5. Time consumption

Considering the entire workflow from flight operation to features extraction, the required
time to monitor one hectare of field surface varied from several minutes to a few hours depending
on the sensor used and the number of the remote images collected by the UAV (Table 6). Most
percentage of time was dedicated to image mosaicking and analysis, which is mainly affected by
image spatial resolution. For this reason, time needed to process the visible-light images (4,032 x
3,024 pixels) was pretty longer in comparison to multispectral images (1,280 x 1,024 pixels).
However, processing time was registered using a standard computer (16 GB of RAM, Intel core i5
processor and graphic card of 1 GB), so a drastic reduction of this time is possible with a more

powerful computer.
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Table 6. Averaged time per surface hectare consumed by each step of the UAV-based workflow as affected by

the type of sensor and flight altitude.

Time (h:min)/ha

Flight altitude . Flight Image OBIA
Sensor # images/ha o A . i Total
(m) operation mosaicking analysis
50 60 0:13 0:25 0:09 0:47
Multispectral
100 10 0:07 0:02 0:04 0:13
50 70 0:05 4:00 1:10 4:15
Visible-light
100 20 0:03 0:40 0:25 1:08

Y With the visible-light camera, the UAV route was configured to continuously take photos with an interval of

3 seconds, flying in lines at 3 m/s with a side lap of 60%. With the multispectral camera, the UAV route was
programmed to stop in every acquisition point. The multispectral images were taken with 60% side and forward
overlaps.

Accordingly, an agreement between result accuracy and operation length is needed in order
to select the sensor and the optimum flight configuration. In our investigation, results obtained at 50
m altitude were around 10-20% better than the ones obtained at 100 m altitude, although image
processing was around four times longer at 50 m altitude. From a practical point view, the 100-m-
altitude images are recommended in order to increase the ground area covered in each flight and,
consequently, to reduce both the mission length and size of the image set. However, the potential
precision expected from each flight altitude should also be considered according to the project

quality requirements.

6. CONCLUSIONS

This investigation has shown the capacity of UAV technology to efficiently produce 3-D
geometrical data of hundreds of agricultural trees at the field level. In combination with an
innovative object-based image analysis algorithm, we computed the canopy area, tree height and
crown volume of the trees in a timely and accurate manner, which offers a very valuable alternative
to hard and inefficient field work. After comparing a set of remote images collected with both a
visible-light camera and a multispectral sensor, we concluded that the upper one is better
recommended for fields with a tree-row plantation pattern and the latter one for single-tree
plantations. We also observed minimum differences between the results obtained with the images
collected at 50-m and at 100-m of flight altitude, concluding that the taller altitude should be

generally selected in order to reduce the time needed to collect and to process the images.

The georeferenced information provided by our procedure allows creating maps of orchard

heterogeneity and, consequently, observing zones with different tree sizes. These maps are critical
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to understand the linkages between tree grown and field-related factors (soil properties, weed
infestations, etc.) or to study the mutual relationship between nearby trees, which can help to
detect problems associated to soil or crop deficiencies or to diagnostic tree pathologies. In addition,
these maps allow adopting a strategy for site-specific management of homogenous zones based on
filed field or tree spatial variability in the context of precision agriculture (Zhang and Kovacs 2012),
which could increase farmer net economic returns by economising on inputs (fertiliser, pesticide,

water, etc) and field operations (pesticide application, irrigation, harvesting, pruning, etc).

Particularly in this context, there is a demand for developing a timely site-specific program to
reduce the issues that are associated with current pest control practices in crops and to comply with
the European legislation and concerns for the Sustainable Use of Pesticides (Regulation EC No
1107/2009; Directive 2009/128/EC). These regulations include such key elements as reductions in
applications using an adequate amount of pesticides according to the specific requirements. Our
investigation offers a reliable tool for an accurate and high-throughput monitoring of the spatial
variability of agricultural-tree fields under two different plantation patterns, including tree height
and crown volume of all the trees in the whole plantation, which could be used to save agricultural

inputs and to optimize crop management operations with relevant agro-environmental implications.

7. ACKNOWLEDGEMENTS

The authors thank Irene Borra-Serrano and Angélica Serrano-Pérez for their very useful help

during field works.

8. REFERENCES

Anderson, C. (2014, April 23). Cheap Drones Give Farmers a New Way to Improve Crop
Yields. MIT Technology Review.
http://www.technologyreview.com/featuredstory/526491/agricultural-drones/.
Accessed 25 January 2015

Baatz, M., & Schape, A. (2000). Angewandte Geographische Informationsverarbeitung XlI
(Vol. XIll, pp. 12-23). Presented at the Beitrage zum AGIT Symposium, Salzburg
(Austria): J. Strbl (Ed.). Karlruhe, Herbert Wichmann Verlag.

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating
Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB
Imaging. Remote Sensing, 6(11), 10395-10412. doi:10.3390/rs61110395

208 Tesis doctoral



3D monitoring of acgricultural tree plantations

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., et al. (2014). Geographic
Object-Based Image Analysis — Towards a new paradigm. ISPRS Journal of
Photogrammetry and Remote Sensing, 87, 180-191.
doi:10.1016/j.isprsjprs.2013.09.014

Dandois, J. P., & Ellis, E. C. (2013). High spatial resolution three-dimensional mapping of
vegetation spectral dynamics using computer vision. Remote Sensing of
Environment, 136, 259-276. d0i:10.1016/j.rse.2013.04.005

Diaz-Varela, R. A., de la Rosa, R., Ledn, L., & Zarco-Tejada, P. J. (2015). High-Resolution
Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo
Reconstruction: Application in Breeding Trials. Remote Sensing, 7(4), 4213-4232.
doi:10.3390/rs70404213

Diaz-Varela, R. A., Zarco-Tejada, P. J., Angileri, V., & Loudjani, P. (2014). Automatic
identification of agricultural terraces through object-oriented analysis of very high
resolution DSMs and multispectral imagery obtained from an unmanned aerial
vehicle. Journal of Environmental Management, 134, 117-126.
doi:10.1016/j.jenvman.2014.01.006

Fernandez-Sarria, A., Martinez, L., Veldzquez-Marti, B., Sajdak, M., Estornell, J., & Recio, J. A.
(2013). Different methodologies for calculating crown volumes of Platanus hispanica
trees using terrestrial laser scanner and a comparison with classical dendrometric
measurements. Computers and Electronics in Agriculture, 90, 176-185.
doi:10.1016/j.compag.2012.09.017

Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298.
doi:10.1016/j.cageo.2005.11.008

Kattenborn, T., Sperlich, M., Bataua, K., & Koch, B. (2014). Automatic single palm tree
detection in plantations using UAV-based photogrammetric point clouds. In The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences (Vol. XL—3, pp. 139-144). Presented at the ISPRS Technical
Commission Il Symposium, Zurich, Switzerland. doi:10.5194/isprsarchives-XL-3-139-
2014

Laliberte, A., & Rango, A. (2011). Image processing and classification procedures for analysis
of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands.

GlIScience and Remote Sensing, 48(1), 4—23. Accessed 1 October 2012

Jorge Torres Sanchez 209



Capitulo 7

Luo, C., Li, X., & Dai, Q. (2014). Biology’s drones: New and improved. Science, 344(6190),
1351-1351. doi:10.1126/science.344.6190.1351-b

Marris, E. (2013). Drones in science: Fly, and bring me data. Nature, 498(7453), 156-158.
doi:10.1038/498156a

Moorthy, |., Miller, J. R., Berni, J. A. J., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field
characterization of olive (Olea europaea L.) tree crown architecture using terrestrial
laser scanning data. Agricultural and Forest Meteorology, 151(2), 204-214.
doi:10.1016/j.agrformet.2010.10.005

MPR. (2014). Real Decreto-ley 8/2014, de 4 de julio, de aprobacion de medidas urgentes
para el crecimiento, la competitividad y la eficiencia (in Spanish). Madrid, Spain:
Spanish Ministry of the Presidency, Official Bulletin (BOE).
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-7064. Accessed 25 January
2015

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied
Geomatics, 6(1), 1-15. doi:10.1007/s12518-013-0120-x

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. [EEE
Transactions on Systems, Man and Cybernetics, 9(1), 62—66.
do0i:10.1109/TSMC.1979.4310076

Pastor, M. (Ed.). (2005). Cultivo del olivo con riego localizado : disefio y manejo del cultivo y
las instalaciones, programacion de riegos y fertirrigacion. Mundi Prensa Libros S.A.
http://dialnet.unirioja.es/servlet/libro?codigo=8551. Accessed 27 August 2014

Pefia, J. M., Torres-Sanchez, J., de Castro, A. I., Kelly, M., & Lopez-Granados, F. (2013). Weed
Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned
Aerial Vehicle (VAV) Images. PLoS ONE, 8(10), e77151.
doi:10.1371/journal.pone.0077151

Qin, R. (2014). An Object-Based Hierarchical Method for Change Detection Using Unmanned
Aerial Vehicle Images. Remote Sensing, 6(9), 7911-7932. doi:10.3390/rs6097911

Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric
characterization of tree crops in agricultural activities. Computers and Electronics in
Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation
systems in the Great Plains with ERTS. In S. C. Freden, E. P. Mercanti, & M. A. Becker

210 Tesis doctoral



3D monitoring of acgricultural tree plantations

(Eds.), Volume I: Technical Presentations (Vol. 1, pp. 309—317). Presented at the
Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA:
NASA, Sp-351 I.

Rovira-Mas, F., Zhang, Q., & Reid, J. F. (2008). Stereo vision three-dimensional terrain maps
for precision agriculture. Computers and Electronics in Agriculture, 60(2), 133-143.
doi:10.1016/j.compag.2007.07.007

Torres-Sanchez, J., Lopez-Granados, F., De Castro, A. |., & Pefia-Barragan, J. M. (2013).
Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site
Specific Weed Management. PLoS ONE, 8(3), e58210.
doi:10.1371/journal.pone.0058210

Torres-Sanchez, J., Lopez-Granados, F., & Pefia, J. M. (2015). An automatic object-based
method for optimal thresholding in UAV images: Application for vegetation
detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43-52.
doi:10.1016/j.compag.2015.03.019

Torres-Sanchez, J., Pefia, J. M., de Castro, A. I., & Ldpez-Granados, F. (2014). Multi-temporal
mapping of the vegetation fraction in early-season wheat fields using images from
UAV. Computers and  Electronics in  Agriculture, 103, 104-113.
doi:10.1016/j.compag.2014.02.009

West, P. W. (2009). Tree and forest measurements (2nd ed.). Berlin, Germany: Springer-
Verlag.

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices
for weed identification under various soil, residue, and lighting conditions.
Transactions of the American Society of Agricultural Engineers, 38(1), 259-269.
Accessed 5 July 2011

Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height
guantification using very high resolution imagery acquired from an unmanned aerial
vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of
Agronomy, 55, 89—99. doi:10.1016/j.eja.2014.01.004

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for
precision agriculture: a review. Precision Agriculture, 13(6), 693-712.

doi:10.1007/s11119-012-9274-5

Jorge Torres Sanchez 211



212 Tesis doctoral



CAPITULO 8

3-D VINEYARD MONITORING WITH UAV
IMAGES AND A NOVEL OBIA PROCEDURE
FOR PRECISION VITICULTURE APPLICATIONS

Torres-Sanchez, J., Lopez-Granados, F., Jiménez-Brenes, F.M., Borra-Serrano, |., de Castro, A.l., Pefia,
J.M. (2016). 3-D vineyard monitoring with UAV images and a novel OBIA procedure for precision
viticulture applications. Enviado a Computers and Electronics in Agriculture
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1. RESUMEN

La estructura tridimensional de los vifiedos puede ser reconstruida mediante la aplicacién de la
fotogrametria a imagenes aéreas tomadas con UAV. Esta informacién tridimensional es muy valiosa
para la implementacion de estrategias de viticultura de precisién, como por ejemplo, el diseifio de
tratamientos localizados adaptados a la deteccién de las cepas y marras, o el ajuste de las
aplicaciones de fitosanitarios de acuerdo al tamafo de la cepa, entre otros. Sin embargo, el
procesamiento de la gran cantidad de datos sobre el cultivo presentes en las imagenes y modelos
tridimensionales de las vifias es actualmente un cuello de botella de esta tecnologia. Para resolver
esta limitacidn, se ha desarrollado un novedoso y robusto algoritmo de OBIA para la caracterizacién y
monitorizacion 3D de vifedos. El procedimiento OBIA es totalmente automatico, es auto-adaptativo
a diferentes situaciones en el campo y puede calcular informacién del cultivo exportable en formato
de tabla, vectorial o raster. Los resultados obtenidos en tres campos de ensayo en dos fechas
demostraron una gran precisién en la clasificaciéon de las cepas, de en torno al 90-95%, asi como
pequefios errores en la estimacién de la altura de la vifia (RMSE de 0,18 m de media). Ademas, el
algoritmo puede calcular la posicidn, area proyectada y volumen de cada cepa en el vifiedo, lo que

aumenta el potencial de esta tecnologia para las aplicaciones de control localizado.

2. ABSTRACT

The three-dimensional (3D) structure of vineyard fields can be generated by combining aerial
images collected with Unmanned Aerial Vehicle (UAV) technology and photo-reconstructed digital
surface models (DSMs). This 3D information is very valuable for the implementation of precision
viticulture strategies, e.g., designing site-specific treatments adapted to grapevines and gap
detection or the adjustment of phytosanitary applications according to canopy size and height,
among others. However, processing the large amount of detailed crop data embedded in the UAV
images and the DSMs is currently a bottleneck of this technology. To solve this limitation, a novel and
robust object-based image analysis (OBIA) procedure was developed for vineyard field monitoring
and 3D grapevine characterization. The OBIA procedure is fully automatic, is auto-adaptive to
different crop-field conditions and can compute explicit crop information both in table, vector
(shape-file) and raster (map) formats, as follows: 1) grapevines and row gap classification, and 2)
grapevine dimensions. The results obtained in three testing fields on two different dates showed
high accuracy in the classification of grapevine area and row gaps at approximately 90% and 95%, as
well as minor errors in grapevine height estimates (RMSE of 0.18 m, on average). In addition, the

customized algorithms included in the OBIA procedure computed the position, projected area and
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volume of every grapevine in the field, which increased the potential of this UAV-based technology

as a tool for site-specific crop management applications.

3. INTRODUCTION

Vineyard vyield and grape quality depends on several field-related factors and changing
weather conditions. Studying the influence and spatial distribution of these factors allows grape
growers to improve vineyard management according to quality and productivity parameters
(Bramley and Hamilton 2004). In this context, precision viticulture (PV) has arisen in recent years as a
new approach in grape production. PV is based in assessing intra- and inter- crop-field spatial
variability and implementing site-specific crop management systems (Arnd Satorra et al. 2009). The
ultimate objective is to optimize crop production and profitability through a reduction in production
inputs (e.g., pesticides, fertilizers, machinery, fuel, water, etc.) and, consequently, diminish potential
damage to the environment due to the over-application of inputs (Schieffer and Dillon 2014; Tey
and Brindal 2012). To design site-specific management strategies, georeferenced information of the
grapevine canopy structure and its variability at the field scale are required as fundamental input
data. As an alternative to time-consuming on-ground methods traditionally used to collect crop data,
remote sensing offers the possibility of a rapid assessment of large vineyard areas (A. Hall et al. 2002;
Johnson et al. 2003). Among the remote sensing platforms, Unmanned Aerial Vehicles (UAVs) stand
out because of their unprecedented high spatial and temporal resolutions, which are essential for the
accurate and timely monitoring of the crop. At present, UAVs are widely used for a wide range of
purposes in viticulture, such as the assessment of water status (Baluja et al. 2012), characterization
of the vine canopy (Ballesteros et al. 2015; Mathews and Jensen 2013), or to study the spatial
variability of yield and berry composition (Rey-Caramés et al. 2015). UAVs are able to fly at low
altitudes with high image overlap, which permits the generation of Digital Surface Models (DSMs)
using photo-reconstruction techniques and artificial vision (Nex and Remondino 2013). The UAV-
based DSMs have recently been used in agricultural applications, e.g., for the three-dimensional (3D)
characterization of herbaceous and woody crops with the aim of monitoring crop conditions and

growth (Bendig et al. 2014; Burgos et al. 2015; Torres-Sanchez et al. 2015).

Processing the large amount of detailed crop data embedded in the UAV images and the DSMs
to extract useful information requires the implementation of robust and automatic image analysis
procedures. In the last few years, object-based image analysis (OBIA) has reached high levels of
automation and adaptability to ultra-high spatial resolution images and, in comparison with
conventional pixel-based methods, proposes better solutions to the problem of pixel heterogeneity

(Blaschke et al. 2014). The first step in OBIA is image segmentation, which consists of creating
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“objects” by grouping adjacent pixels with homogenous spectral values. Next, OBIA combines the
spectral, topological and contextual information of these objects to address complicated
classification issues. Successful examples of OBIA applications include agricultural (Pena et al. 2013),

grassland (Laliberte and Rango 2011) and forest scenarios (Hellesen and Matikainen 2013).

In this investigation, a novel OBIA procedure, composed of a rule-set of customized algorithms,
was developed for the monitoring of vineyard fields with the main objective of automatically
characterizing the 3D structure of the grapevines. This 3D information was previously generated by
combining aerial images collected with an UAV equipped with a low-cost camera and photo-
reconstructed digital surface models (DSMs). Specific objectives included the following: 1) automatic
classification of grapevines and row gaps, even in fields with inter-row vegetation (cover-crop, weeds
or grass), which has been reported in previous studies as a complex scenario due to the spectral
similarity of different vegetation types observed in the field (Baluja et al. 2012), and 2) automatic
estimation of grapevines position (geographic coordinates) and dimensions (projected area, height,
and volume). This output information is very valuable to for the application of precision viticulture
strategies, e.g., designing site-specific treatments adapted to grapevine structure and the detection
of row gaps or adjusting phytosanitary applications according to canopy size and height, which can

contribute to notable savings in products and tasks (Llorens et al. 2010).

4. MATERIALS & METHODS

4.1. Study fields and UAV flights

The experiment was carried out in three different commercial vineyards located in the
province of Lleida, Northeastern Spain (Table 1). The private company Raimat, owner of the fields,
authorized this investigation and gave permission for the UAV flights. All the fields were vertically

shoot-positioned with the rows separated by 3 m, and had inter-row green vegetation (Fig. 1a).

Table 1. Main characteristics of the study fields. Coordinates are in the WGS84, UTM zone 31N reference

system.

Studied Area

Field Grape variety (m?) Central Coordinates (X, Y)
9 Merlot 4,925 291,009 E; 4,613,392 N
24 Albarifio 4,415 291,303 E; 4,614,055 N
111 Chardonnay 2,035 290,910 E; 4,616,282 N

The remote images were acquired with a low-cost commercial off-the-shelf camera, model

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) mounted in a quadcopter model MD4-
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1000 (microdrones GmhH, Siegen, Germany) (Fig 1b). The camera weighs 0.38 kg and is equipped
with a 14-42 mm zoom lens, although it was fixed to a 14 mm focal length for this study. The
camera’s sensor size is 17.3 x 13.0 mm and the pixel size is 0.0043 mm. The camera takes 12.2
megapixel (4,032 x 3,024 pixels) images in true color (Red, R; Green, G; and Blue, B, bands) with 8-bit
radiometric resolution, which are stored in a secure digital SD-card in JPEG format. The UAV can be
manually operated by radio control (1,000 m control range) or it can execute user-defined flight
routes autonomously using its autopilot in combination with its Global Navigation Satellite System

(GNSS) receiver. The UAV is battery powered and can load any sensor weighing up to 1.25 kg.

c)

Figure 1. Images of the studied fields: a) green inter-row covers in Field 111 on July; b) the unmanned
aerial vehicle taking off over Field 9; c) and d) comparative of the condition of the vines in Field 24 on July and

September.

Two flights were performed in each field, on 29" July 2015 and on 16™ September 2015,
corresponding to different crop stages. In July, the grapevine canopy was fully developed, while in
September, the grapes had been machine-harvested, and consequently, the grapevine canopy was
less dense (Fig.1c and 1d). The diversity of the fields and the different dates made possible the
analysis of a wide range of situations to ensure the robustness of the OBIA procedure. All of the
flights were performed at a 30 m flight altitude, with a resulting ground sampling distance of 1 cm.

The flight route was designed with a forward lap of 93% and a side lap of 60%, which was high
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enough to achieve the 3D reconstruction of woody crops according to previous investigations

(Torres-Sanchez et al. 2015).

4.2. DSM and orthomosaic generation

DSM and orthomosaic generation was done using the Agisoft PhotoScan Professional Edition
software (Agisoft LLC, St. Petersburg, Russia) version 1.2.4 build 1874. The mosaicking process was
fully automatic, with the exception of the manual localization of 5 ground control points taken with a
GPS device in the corners and in the center of each field for georeferencing the DSM and
orthomosaic. The whole automatic process involves three principal stages: 1) aligning images, 2)
building field geometry, and 3) ortho-photo generation. First, the camera position for each image and
common points in the images were located and matched, which facilitated the refinement of camera
calibration parameters. Next, the DSM was built based on the estimated camera positions and the
images themselves. Finally, the individual images were projected over the DSM, and the orthomosaic
was generated. The DSMs were saved in greyscale tiff format. More details about the Photoscan
functioning are given in (Dandois and Ellis 2013). Information about the processing parameters of the

software can be observed in Table 1.

Table 2. Processing parameters of the DSM and orthomosaic generation processes in Agisoft Photoscan

PROCESSING PARAMETER VALUE

Alignment parameters

Accuracy High

Pair preselection Disabled
Dense point cloud

Quality High

Depth filtering Mild

DEM
Coordinate system
Source data
Orthomosaic

Blending mode

WGS84 / UTM zone 31 N

Dense cloud

Mosaic

4.3. OBIA algorithm

The OBIA algorithm for the detection and characterization of grapevine rows (Fig. 2) was
developed with the eCognition Developer 9 software (Trimble GeoSpatial, Munich, Germany). It does
not need any user intervention and can be divided into three major steps: 1) grapevine classification,

in which the grapevines are detected with the DSM using their differences in height with reference to
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the soil; 2) row gap detection, in which the row segments in the absence of grapevines are classified
as “gaps”; and 3) morphological characterization of every grapevine segment. The DSM in geoTIFF
format was used to perform the three steps, while the orthomosaics were only used to validate the

classification results.

1. Vine classification: the DSM is segmented in a grid of squares with 0.5-m sides. This size was
selected in relation to the vine row width, which is approximately 0.7 m. All of the squares
with a standard deviation of the values in the DSM below 0.15, i.e., squares with a low
variability in their altitude, are classified as soil squares. The remaining squares are classified
as “vine candidates”. One by one, the squares classified as “vine candidates” are segmented
in pixel size, and the mean difference of altitude between these pixels and the neighboring
soil squares is calculated. If the difference is higher than the minimum vine altitude (0.8 m in
these fields), the pixel is classified as “vine”. Analyzing each “vine candidate” separately
allows only the surrounding soil altitude to be taken into account, which prevents a
comparison of the vine height with the average soil altitude, which could result in mistakes in
vineyards grown in fields with slope. After the processing of all of the “vine candidate”
squares, the vines in the field are classified. This process is quick due to the simplicity of the
calculations, and the presence of cover in the inter-row areas does not interfere with the
vine classification because it is based on height detection and not on vegetation indices
thresholding.

2. Gap detection in vine rows: once all of the vines are classified, their orientation is used to
rotate the image. By doing this, the image shows the rows horizontally, which eases the
following processes. The first one is the creation of an upper level of analysis, which is
segmented in horizontal rows with a width of 0.5 m. Then, the algorithm looks for the row
with the highest percentage of vine in the lower level. This row and its neighbors are
classified as a “vine row”, and the rows sharing a border with these ones are classified as “no
vine rows” to simplify the search for vine rows in the following steps of the algorithm. These
steps are repeated in a loop until all of the rows are classified as “vine row” or “no vine row”.
For detecting the gaps in the vine rows, they are segmented and the objects without vines in
the lower analysis level are classified as “gap”. The “gap” objects are copied to the lower
level, and the upper level is deleted. After all of these processes, the vines and the gaps in
the vine rows are classified.

3. Vine segments characterization: the vine rows were segmented into 2-m-long objects, and a
lower level representing the vine divided in pixels was created. At this point, the geometric
features such as width, length and projected area of the vine canopy and the vine height

were automatically calculated by applying a looping process in which each vine segment was
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individually identified and analyzed. Next, the crown volume was calculated by integrating
the volume of all of the individual pixels (bottom level) that were positioned below each vine
segment (upper level) in the hierarchical structure. In this operation, the height and area of
every vine pixel were multiplied to obtain the pixel volume, and the vine volume was
subsequently derived by adding the volume of all of the pixels below each vine segment. This
step was performed at the pixel level, which permitted dealing with the irregular shapes of
the vines. This process was very similar to the last step of the algorithm developed for olive

characterization in (Torres-Sanchez et al. 2015).

Vine classification Gap detection

Image rotation using vine
objects orientation

DSM chessboard
segmentation (0.5m)

Upper level segmentation
in rows

No Yes Row v~{|th higher% | Unclassified
of vine below

T
No
No vine Vine candidate
- i Yes
, Border to vine )
Vine row > 5 No vine row
Pixel Fow'

segmentation
Vine row segmentation

Vine objects
below?

No_ | Yes

Loop

Mean DSM difference
to surrounding Soil >
0.8m?

No

Yes

Legend

I:] OBIA process © Classification rule [:] Class

Figure 2. Explicative diagram of the automatic OBIA algorithms. Abbreviations used: DSM (digital surface

model), SD (standard deviation)

4.4, Validation

4.4.1. Grapevine classification and gap detection

Manual classification of the orthomosaics was done over 20 squares of 2 x 2 m located on a
grid basis over the study fields (Fig. 3a and b), the points were marked on the field using an artificial
target for locating them more easily on the orthomosaics. The squares were designed with the same
orientation as the vine rows using ArcGis 10.0 (ESRI, Redlands, CA, USA) shapefiles. The manual
editing tools of eCognition were used for the manual classification of vine and soil in the 20 squares.
This classification was compared with the output of the automatic classification algorithm, and

confusion matrices were constructed using the results of the comparison. Cohen’s Kappa index (Eq.
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1) and overall accuracy (OA) (Eq. 2) were computed for the confusion matrix resulting from the

comparison.

The automatically generated maps with the classification of vines and gaps were overlaid with
the orthomosaics to validate the gap detection section of the algorithm. The lengths of correctly

classified gaps, non-detected gaps, and vines classified as gaps were measured using ArcGIS 10.0.

4.4.2. Grapevine height

In every field and on every date, the grapevine height was measured using a ruler (Fig. 3c) on
both sides of the points located in the field for classification validation, resulting in 40 validation data
in every field and on every date. The measured height of the vines was compared to the height
detected by the OBIA algorithm in the validation points. The R? and root mean square error (RMSE)

of this comparison were calculated using JMP software (SAS, Cary, NC, USA).

Figure 3. Experimental set for validating the vine height detection results: a) point grid in Field 9 on July; b) one
of the vector squares used for classification validation (the yellow points indicate the positions of height

measurements); c) measurement of the vine height.
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5. RESULTS AND DISCUSSION

5.1. Vine classification

Vine classification based on height differences (Fig. 4c and d) provided by the DSM achieved
high levels of accuracy, being 93.61% (Table 3) the lower OA value reached among all of the studied
fields. In the six cases analyzed, the kappa index values were over 0.7, and they were very near to 0.9
in Fields 9 and 24 on both studied dates (Table 3), which demonstrates a good classification accuracy
taking into account that kappa values range from -1 to 1. The accuracy was higher in Fields 9 and 24
because they had more vigorous and developed vine canopies. On the other hand, the vines in Field
111 were smaller and less vigorous, which resulted in a poorer 3D reconstruction, and, consequently,
in a lower performance of the DSM based OBIA algorithm. The low and irregular growth of vines in
Field 111 led the property to uproot the entire parcel in the winter of 2015-2016. Therefore, the
lower kappa values could be from the fact that the existence of very thin branches with few leaves
made the 3D modelling of the crop more difficult. The contrast between the kappa values in Field
111 and the high OA values reached in both dates is because the vine covered only a small
proportion of the image; consequently, the high percent of soil in the image ensure a high OA value,

even if the algorithm did not detect the vine accurately.

Table 3. Kappa index values for the vine classification in the three fields on both study dates.

Field Date Overall accuracy (%) kappa
July 95.54 0.91
9
September 95.41 0.89
July 95.19 0.87
24
September 95.98 0.85
July 93.61 0.78
111
September 96.07 0.73

Vine classification accuracy is important in itself because of its applicability to vine monitoring
purposes. However, it is also important because it can be used as a beginning step for information
extraction of the vine with the same sensor or using other sensors. When using thermal sensors to
assess the vineyard water status, a good vine classification is required for extracting thermal data
corresponding only to the vine canopy (Baluja et al. 2012). Baluja et al. tried to use NDVI thresholding
techniques for pure canopy pixel extraction, but it led to problems with the inclusion of soil pixels or
with large losses of information. Thresholding methods for vine classification can cause problems due
to shadows and to inter-row cover crops. Determining an optimal threshold is a compromise
between retaining non-vine NDVI values and losing vine NDVI values. It is very difficult to achieve an

optimal balance and, consequently, thresholding on its own is not suitable for vine row classification
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(Smit et al. 2010). Finally, Baluja et al. used a watershed algorithm available in GRASS GIS (Metz et al.
2010) that improved the classification (data not shown numerically in their work) although they
mention that it also caused soil inclusion in the vine classification. Because the vine classification
approach presented in this work is based on 3D reconstruction rather than on vegetation index
thresholding, less than 6.5% (data not shown) of the soil was classified as vine, and the green cover in
the inter-row did not interfere in the vine classification. Consequently, it could be used to mask soil
pixels in thermal imagery for the assessment of the vineyard water status. Another important aspect
of the proposed methodology is that it does not need any user intervention, while other approaches
need of manual touch-up for removing non-vine objects (Mathews 2014) or need manually
delineated regions of interest to ensure their vigor information belongs only to the vine (Matese et
al. 2015) and it was not influenced by the spectral information of the green cover (Fig. 1a and 4a)

growing in the inter-row areas.

c) d)

Figure 4. Different results of the workflow over the same area of Field 9 on July: a) orthomosaic; b) digital

surface model; c) vine classification output; d) gap detection and vine segments ready for its characterization.

5.2.  Vine gaps detection

All of the gaps were detected in the three fields and on both dates, with only the exception of
Field 9 in September, and even in this case, more than 95% of the gaps’ length was detected (Table

4). False positive rates were very low in Fields 9, 24 and 111 in July, but on the second date for Field
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111 the algorithm detected about 50% more gaps than actually existed. This result is in agreement
with the lower kappa achieved in the vine classification in the same case, and it is also related to the
less correct 3D reconstruction due to the bad condition of the crop. The results in Field 111 in July
were better because the vine canopy in September was affected by the harvest machinery and,
consequently, was in worse condition. In any case, the vineyard health was so bad even in July that

the property uprooted the field a few months later.

The lower accuracy in gap detection and vine classification in Field 111 in September contrasts
with the low RMSE achieved in the height detection (Fig. 6). This is because the validation of height
detection was done by measuring the height of the top area of the vines in the field, and the 3D
reconstruction software was able to detect these singular points. However, in Field 111 in
September, it had problems with the reconstruction of the lower parts of the vine due to the
presence of a weak canopy with sparse leaves. Consequently, the algorithm was able to accurately
detect the vine height but achieved worse results in vine classification and gap detection, which

where the parts of the algorithm where the whole vine geometry should be correctly generated.

Table 4. Results of the gap detection in vine rows. Percentages were calculated over the total length of gaps in

the field.
Field Date True False False
positive (%) positive (%) negative (%)
July 100.00 1.12 0.00
9 Septe
96.79 0 3.21
mber
July 100.00 1.03 0.00
24 Septe
100.00 5.98 0.00
mber
July 100.00 0.00 0.00
111 Septe
100.00 46.81 0.00
mber

Vine height quantification

The OBIA algorithm accurately extracted the plant height from the vineyard DSM, only one of
the field measurements was omitted because the algorithm did not detect the vine in it. An R? of
0.89 was achieved in the correlation of the measured height with the detected height for the
combination of all fields and dates (Fig. 5). The RMSE of this correlation was 0.18 m, very near to the
one achieved in the detection of tree height in (Torres-Sanchez et al. 2015). When analyzing the data
by field and date (Fig. 6), it can be seen that the RMSE was lower in all cases, with the exception of
Field 24 in July, and in four cases, it was equal to or lower than 0.12 m. The low errors in height
detection are similar to the one achieved in (Burgos et al. 2015), where, although there was not an

exhaustive height detection validation, the difference between the average detected height and the
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topping height measured in the field was 0.13 m. Burgos et al. used a flight plan with a crossing lines
pattern, which implies needing more time for flying a vineyard, and, consequently, reducing the
maximum area that could be analyzed due to the limited UAV autonomy. Another difference with
the present work is that they needed to generate a digital terrain model to study the crop height

while the use of OBIA in the present work allowed omitting this step in the analysis workflow.
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Figure 5. Graphical comparison of measured vs. detected vine height. Different colors in the points indicate the
different fields. The results of July and September are shown together.
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Figure 6. Graphical comparison of measured vs. detected vine height divided by field and date. Different colors

in the points indicate the different fields.
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5.4. Volume mapping

The workflow presented herein allows for growth monitoring of the vineyard during the entire
growing cycle through the detection of the vineyard area and height, and the localization of gaps in
the vine rows. The combination of accurate vine detection with good detection of vine height and its
variability allows the calculation of the vine canopy volume (Fig. 7). All of these variables can be
mapped in different moments of the year, which allows the identification of areas inside the vineyard
that could have a problem and, consequently, need site-specific management (Andrew Hall et al.
2010). This information can also be exported as table files (e.g., Excel or ASCIl format) (Table 5) for its
use in variable-rate sprayers, a technique that has allowed savings of up to 58% of the application
volume (Llorens et al. 2010), which represents an important reduction in pollution and operation

costs.
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Figure 7. Volume maps of the three fields on July. From left to right: Field 9, Field 24, and Field 111. Coordinates
are in the WGS84, UTM zone 31N reference system.

Table 5. A sample of the output data file for vine segments of field 9 in September.

X Center Y Center Length Width Area Vine max Vine mean Vine volume

(m) (m) (m?) height (m) height (m) (m3)
290909.63 4615191.17 1.36 0.48 0.51 2.02 1.49 0.76
290909.85 4615192.23 2.06 1.41 1.93 2.13 1.33 2.56
290910.55 4615194.39 2.05 1.21 1.32 2.22 1.53 2.02
290918.60 4615225.30 2.06 1.74 2.35 2.22 1.72 4.05
290919.09 4615227.23 2.14 1.65 2.15 2.18 1.54 3.31
290919.60 4615229.19 2.03 1.37 1.46 2.00 1.41 2.06
290920.12 4615231.14 2.19 1.63 2.13 2.00 1.40 2.99
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6. CONCLUSIONS

Three commercial vineyards were modelled in 3D on two different dates using images
acquired with a low-cost camera onboard a UAV. A robust and automatic OBIA algorithm was
developed for the 3D characterization of the vine parcels, including vine classification, height
estimation and gap detection. Vine classification was based on the height variation in the DSMs
because green-cover growing in the inter-rows could have led to misclassification due to the
similarity in the spectral values of the cover and the vine canopy. The algorithm accurately detected

the vine area, height, and the existence of gaps in most cases.

The combination of ultra-high-spatial resolution DSMs and the OBIA algorithm developed in
this paper has been shown to be a valuable tool for the accurate characterization of the vines. The
OBIA procedure computes multiple data that can be exported in image, vector and table format to
be used as inputs in the design of variable rate treatments for precision viticulture. Furthermore, the
classification of the vine can be used as a mask over thermal or multispectral imagery of the
vineyards to isolate pixels corresponding to the vine canopy, which would allow for the extraction of

more accurate information by avoiding the spectral mixing of the different soil uses.
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El objetivo general de la presente Tesis Doctoral ha sido el desarrollo de metodologias

atizadas y robustas para la cartografia de malas hierbas en cultivos herbdceos en fase

temprana y la monitorizacién tridimensional de cultivos lefiosos, con el fin ultimo de contribuir a la

implementacion de estrategias de técnicas de aplicacidn variable en el ambito de la agricultura de

precisi

10

on que permitan un uso sostenible de los productos fitosanitarios.
Este objetivo global se ha desarrollado a través de los siguientes objetivos especificos:

Estudiar la configuraciéon y las especificaciones técnicas de un UAV y de los sensores
embarcados para su aplicacion en la deteccién temprana de malas hierbas y contribuir a la
generacidon de mapas para disefiar un programa de control dirigido Unicamente a dichas
emergencias.

Evaluar los indices espectrales en el rango visible existentes en la literatura cientifica para su
aplicacion en la discriminacidon de suelo desnudo y vegetacidon (malas hierbas y cultivo) en
imagenes tomadas con un UAV sobre cultivos de trigo en fase temprana.

Implementar en un entorno OBIA un método de calculo automatico de umbrales para la
deteccion de vegetacion (cultivo y malas hierbas) en imagenes procedentes de UAV tomadas
en cultivos herbaceos (maiz, trigo y girasol) en fase temprana.

Desarrollar una metodologia OBIA automatica y robusta para la discriminacién de malas
hierbas en cultivos herbdceos en fase temprana, asi como evaluar la influencia sobre su
funcionamiento de distintos pardmetros relacionados con la programacién de los vuelos y la
adquisicidon de imagenes UAV.

Desarrollar una metodologia OBIA automatica y robusta para la caracterizacion

tridimensional de cultivos lefiosos (olivar y vifia) mediante imagenes y MDS generados a

partir de imagenes procedentes de un UAV.

De los trabajos desarrollados para alcanzar los objetivos especificos marcados en esta Tesis

Doctoral se han podido obtener las siguientes conclusiones:

1.

La tecnologia UAV es capaz de proporcionar imagenes con la resolucién espacial y temporal
necesarias para la deteccidn de malas hierbas en fase temprana. La resolucién espacial de las
imagenes, el area cubierta por cada una y el tiempo de vuelo necesario para abarcar una
parcela completa varian en funcién de las especificaciones del sensor, el porcentaje de
solape (transversal y longitudinal) y la altura de vuelo. La resolucién espacial 6ptima debe ser
definida de acuerdo al objetivo planteado. Para discriminar plantas individuales de malas
hierbas, seria recomendable un pixel menor de 4 cm, lo que con los sensores utilizados en
esta Tesis correspondid a altitudes de vuelo por debajo de 100 m. Si el objetivo es la

deteccion de rodales de malas hierbas, el UAV puede volar mas alto y generar pixeles de
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menor resolucion. Ademas de la altitud de vuelo y el sensor utilizado, es necesario considerar
el porcentaje de solape y la duracidon de las baterias del UAV ya que el nimero de imagenes
necesarias para cubrir una parcela completa a baja altura y con elevados porcentajes de
solape requiere mds tiempo y ello puede ocasionar problemas relacionados con la
autonomia del UAV en el disefio de rutas de vuelo.

Las diferencias espectrales en imagenes tomadas con un UAV entre malas hierbas, cultivo y
suelo desnudo fueron significativas para los indices NGRDI y ExG, sobre todo en vuelos a 30
m de altitud. Sin embargo, a mayor altitud las malas hierbas y plantas de cultivo en fases
tempranas de crecimiento presentan valores espectrales similares. La estrategia que podria
mejorar su clasificacidon seria mediante el uso de técnicas OBIA que afadan al analisis de las
imagenes informacidn contextual a la espectral.

Los indices de vegetacidon calculados a partir de una serie multitemporal de imagenes
tomadas con un sensor en rango visible (RGB) de bajo coste a bordo de un UAV permiten
discriminar vegetacion (cultivo y malas hierbas) en campos de trigo en fase temprana. Entre
los indices evaluados, los resultados mas satisfactorios fueron obtenidos con ExG y VEG,
siendo ExG el mas preciso para aplicaciones prdcticas en agricultura debido a su mayor
simplicidad y su mejor ajuste en vuelos realizados a 30 y 60 m de altitud en todas las fechas
de toma de imagenes evaluadas. Por tanto, la altitud y la fecha de vuelo deben ser evaluados
y fijados segun los objetivos de la toma de imagenes.

Es posible la umbralizacién automatica de indices espectrales para la clasificacion de
vegetacién (cultivo y malas hierbas) mediante el desarrollo de un algoritmo automatico y
eficiente que adapta el método de Otsu a un entorno OBIA. Se ha demostrado la habilidad
del algoritmo para seleccionar un umbral de un histograma de niveles de gris con
independencia de que este sea unimodal o bimodal. Ademas, el uso de este procedimiento
en un entorno OBIA aumenta su transferibilidad al eliminar la necesidad de calcular los
umbrales dptimos para cada area de manera manual.

Se ha desarrollado un procedimiento OBIA robusto y automatico para la discriminacion de
malas hierbas en imagenes tomadas por UAV sobre cultivos herbaceos en fase temprana. Las
malas hierbas son identificadas en base a su posicidn relativa respecto a las lineas de cultivo.
El algoritmo disefiado calcula pardmetros estadisticos derivados del analisis de la imagen y
puede ser exportado en diversos formatos, lo que permite su implementacién en programas
de SSWM para el disefio de mapas de tratamientos herbicidas.

En campos de girasol y estudiando un conjunto de imagenes multitemporales, la mayor
precisién en la deteccion de malas hierbas fue obtenida mediante imagenes capturadas a 40

m de altitud 50 dias después de la siembra, cuando el cultivo y las malas hierbas tienen 5-6
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hojas verdaderas (cédigo 15-15 en la escala BBCH). En esta fecha, se obtuvo una precision del
91% con un sensor multiespectral (RGB+NIR). En vuelos a 40 m de altitud, las imagenes
capturadas en la fecha anterior mostraron una precisién ligeramente mayor que las tomadas
con posterioridad. Sin embargo, a altitudes superiores a los 60m, las imagenes generadas con
el sensor en rango visible (RGB) dieron mejores resultados en la tercera fecha debido al
mayor tamafio de las malas hierbas. Con el fin de ofrecer una aplicacion practica al usuario
interesado, se realizan una serie de recomendaciones para que antes de iniciar trabajos de
deteccion de malas hierbas con UAV se consideren varios factores: 1) caracteristicas y precio
del sensor; 2) area cubierta en cada vuelo; 3) grado de precisién necesario; 4) objetivo
agrondmico.

7. Lacombinacién de imagenes UAV de muy alta resolucién espacial con el procedimiento OBIA
desarrollado permite la generacidn de mapas de malas hierbas en cultivos herbaceos en fase
temprana. Estos mapas de emergencias permiten disefiar mapas de tratamientos localizados
de herbicidas que se pueden adaptar a cada cultivo y a diferentes tamafios de distancia entre
los pulverizadores de los equipos de tratamiento, lo cual no habia sido posible previamente.
El procedimiento OBIA permite calcular informacidn del cultivo exportable en los formatos
de tabla, vectorial o raster. Esta tecnologia ha demostrado la posibilidad de ahorros medios
herbicidas cercanos 70%, pudiendo ayudar en la implementacién de las legislaciones europea
y espainola para el uso sostenible de fitosanitarios, una de cuyas finalidades consiste en
promover la reduccién de las aplicaciones de herbicidas.

8. Se ha demostrado la capacidad de la tecnologia UAV para generar eficientemente datos
tridimensionales de centenares de arboles en cultivos lefiosos. En la investigacion realizada
en esta Tesis Doctoral se eligio el cultivo del olivar por su relevancia en la Cuenca
Mediterrdnea y se abordé en parcelas gestionadas tanto de manera intensiva (en seto) como
tradicional. Mediante el innovador algoritmo OBIA desarrollado, se ha podido llegar a un 97%
de precision en la cuantificacion del drea de copa proyectada y a minimas desviaciones en las
estimaciones de la altura y el volumen, ofreciendo una valiosa alternativa a las mediciones en
campo. La informacidn georreferencia generada por el procedimiento OBIA permite crear
mapas que reflejan la variabilidad del cultivo, pudiendo ser utilizados para el disefio de
tratamientos fitosanitarios con tecnologia variable que ayuden a reducir la cantidad de
producto aplicado a su parte aérea y en consonancia con las legislaciones europea y espafiola
vigentes. El procedimiento OBIA permite calcular informacién del cultivo exportable en los
formatos de tabla, vectorial o raster. Ademds, permite estudiar las relaciones entre el

crecimiento de los drboles y otros factores como propiedades del suelo, la topografia del
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terreno, infestaciones de malas hierbas o drboles afectados por algun insecto-plaga, hongo u
otro tipo de estrés.

Se ha desarrollado un novedoso y robusto algoritmo de OBIA para la caracterizacién y
monitorizacién 3D de vifiedos. La clasificacion de la vifia se basé en la variacidn de alturas en
los MDS, lo que permitié evitar los problemas que la vegetacion creciendo entre las hileras
de vifia hubiera provocado en caso de utilizar una aproximacion basada en pixeles e indices
de vegetacion. El procedimiento OBIA es totalmente automadtico, auto-adaptativo a
diferentes situaciones en el campo y permite calcular informacién del cultivo exportable en
los formatos de tabla, vectorial o raster. Los resultados demuestran una gran precision en la
clasificacidn de las cepas, en torno al 90-95%, asi como pequeios errores en la estimacion de
la altura de la vifia (RMSE de 0,18 m de media). Ademads, el algoritmo puede calcular la
posicion, drea proyectada y volumen de cada cepa del vifiedo, lo que aumenta el potencial
de esta tecnologia para desarrollar estrategias relacionadas con la tecnologia basada en

aplicacién variable de fitosanitarios dirigidos a la parte aérea del cultivo.
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