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1. INTERÉS ECONÓMICO Y AGRO-AMBIENTAL DEL USO SOSTENIBLE DE 

FITOSANITARIOS EN EL MARCO EUROPEO Y ESPAÑOL 

La agricultura europea se caracteriza, de una forma general, por una alta productividad ligada 

a una elevada mecanización y al empleo de productos agroquímicos aplicados de forma uniforme en 

las parcelas (Figura 1). Estas prácticas presentan un coste agro-económico notable y una relevante 

huella de carbono, producida tanto por las emisiones directas de la maquinaria agrícola, como por las 

indirectas derivadas de la producción de insumos agrícolas (fertilizantes, fitosanitarios, semillas, 

entre otros) (Schieffer y Dillon 2014). En concreto, la actual producción agraria requiere el consumo 

de fitosanitarios (principalmente herbicidas, fungicidas e insecticidas) como herramienta esencial 

para mantener las necesidades de calidad y cantidad de alimentos que demanda la población. Los 

gastos en herbicidas ascendieron en 2015 en España a 312 M € mientras que los referidos al resto de 

fitosanitarios llegaron a los 547 M € (AEPLA 2016).

Figura 1. Tratamiento herbicida en cereal (a) y fungicida en viñedo (b) realizado de forma uniforme sin tener en 

cuenta la distribución espacial de las malas hierbas ni del hongo que se deben controlar ni la arquitectura de las 

cepas en el caso de la viña.  

Este elevado coste de las aplicaciones propiamente dichas junto con el de los fitosanitarios, así 

como sus potenciales efectos medioambientales, han originado una gran preocupación  en distintos 

ámbitos administrativos cuya consecuencia ha sido la creación de Normativas Europeas como el 

REGLAMENTO (CE) 1107/2009 para la comercialización de Productos Fitosanitarios y la DIRECTIVA 

2009/128/CE para el Uso Sostenible de Fitosanitarios. Dentro de esta Directiva se destacan como 

elementos clave “el fomento del bajo consumo (reducción de las aplicaciones) y la utilización de 

dosis adecuadas en función de las infestaciones de malas hierbas, insectos-plaga y enfermedades”. 

Esta Directiva ha sido traspuesta a cada país miembro de la Unión y en España se publicó el Real 

Decreto 1311/2012 (BOE nº 223, 15/09/2012: 65127-65171) en el que se define el Marco de 

Actuación para un Uso Sostenible de los Productos Fitosanitarios. Concretamente se establece que 

“las poblaciones de los insectos-plaga, enfermedades y malas hierbas deben ser objeto de 
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seguimiento mediante métodos e instrumentos adecuados” y como objetivo se menciona el 

“desarrollo de herramientas de gestión… y sistemas de apoyo a las decisiones basados en SIG y 

teledetección”. Estos últimos componentes están incluidos en el fundamento agronómico de dos 

técnicas integradas en la Agricultura de Precisión y que son de gran importancia para alcanzar las 

metas propuestas en la legislación anteriormente comentada:

1. En el ámbito de los cultivos herbáceos, la tecnología basada en tratamientos localizados de 

herbicidas (en inglés SSWM: Site-Specific Weed Management) según la distribución de las 

malas hierbas. Esta forma de acometer el control de malas hierbas se basa en que éstas se 

suelen distribuir en rodales dentro de los cultivos, tal como prueban numerosos trabajos 

científicos, lo que permite cartografiar zonas de infestación y de no infestación de forma que 

los tratamientos puedan definirse según la densidad de malas hierbas y composición de 

grupos (por ejemplo, monocots vs dicots; malas hierbas resistentes o de difícil control; Heijting 

et al. 2007; Jurado-Expósito et al. 2004, 2009).

2. En el ámbito de los cultivos leñosos, la tecnología de aplicación de fitosanitarios (en inglés VA: 

Variable Application) se puede realizar en función de su volumen y arquitectura considerando 

si un árbol o conjunto de árboles (o cepas en el caso de viñedo) están o no afectados por 

determinado problema que necesite la aplicación dirigida a su parte aérea en esa zona del 

campo. La utilización del volumen de copa de estos cultivos como base para el cálculo y 

optimización de las aplicaciones de estos fitosanitarios fue discutido y evaluado por Sutton y 

Unrath (1984). Estas aplicaciones necesitan ser precisas y estar adaptadas a la arquitectura y 

volumen del cultivo, de lo contrario el agricultor utiliza producto por elevación, aplicándolo de 

forma inadecuada y provocando un exceso de tratamiento (Figura 1)  que puede llevar a gastos 

agro-económicos innecesarios y a potenciales riesgos medioambientales de diversa índole 

(Miranda-Fuentes et al. 2016).

Además de la legislación comentada anteriormente se han creado los cauces para generar el 

conocimiento científico y los desarrollos tecnológicos de forma que la estrategia agronómica que 

subyace en la aplicación sostenible de fitosanitarios se contempló como objetivo en el 7º Programa 

Marco Europeo, concretamente en los Programas 7FP-NMP-2009 (Nanosciences, Nanotechnologies, 

Materials and New Production Technologies) y 7FP-KBBE-2008 (Food, Agriculture and Fisheries, and 

Biotechnology). Actualmente y dentro del vigente Programa H2020 también se incorporó este 

objetivo en el Reto Social "Food security, sustainable agriculture and forestry, marine and maritime 

and inland water research and the bioeconomy", en el que se incluyen dos acciones: (a) Acción "SFS3-

2014: Practical solutions for pests and invasive alien species affecting plants" en la que se persigue 

avanzar en el desarrollo de soluciones fiables para la gestión de insectos-plaga, enfermedades y 
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malas hierbas utilizando las últimas tecnologías y mediante enfoques biológicos e integrados; y (b) 

Acción "SFS2-2014/2015: Sustainable crop production" en la que se pretende alcanzar una mejora en 

la sostenibilidad de diferentes sistemas intensivos de producción de cultivos, disminuyendo el 

impacto negativo sobre el medio ambiente, empleando nuevas tecnologías (sistemas automatizados, 

aplicaciones localizadas, teledetección, sensores terrestres, TICs). Esta acción se centra en la 

racionalización de las necesidades de nutrientes y de fitosanitarios mediante la minimización del uso 

de fertilizantes, herbicidas y otros fitosanitarios. Ello se debe lograr definiendo nuevas estrategias 

de manejo de los cultivos que reduzcan su uso y, al mismo tiempo, garanticen un nivel adecuado de 

fertilización y control así como unos rendimientos económicos y medioambientales satisfactorios. Es 

decir, es necesario compatibilizar productividad con sostenibilidad lo cual es sin duda un reto 

fundamental en los actuales sistemas agrícolas.  En esta Tesis Doctoral se proponen una serie de 

desarrollos cuya finalidad es aportar conocimiento y tecnologías para avanzar en la consecución de 

este desafío. 

A continuación se recogen los principales conceptos que se desarrollan en la presente Tesis 

Doctoral para la elaboración de mapas de prescripción de tratamientos herbicidas, y para la 

caracterización tridimensional de cultivos leñosos. Se presenta asimismo la bibliografía más  

relevante sobre dichas temáticas y las tecnologías relacionadas con éstas.  

2. AGRICULTURA DE PRECISIÓN 

Como se ha mencionado anteriormente, uno de los métodos posibles que permiten aumentar 

la sostenibilidad de las explotaciones agrícolas es el abandono de las prácticas más comunes en la 

agricultura convencional consistentes en la aplicación de manera uniforme en todo el campo de las 

labores y los insumos (dosis de siembra, fertilizantes, herbicidas, insecticidas, fungicidas, riego, entre 

otros). Es necesario tener en cuenta que un sistema  agrícola se compone de elementos muy diversos 

y que en una parcela existen variaciones que se pueden agrupar en tres tipos (Hatfield 2000): 1) 

natural, como el suelo y la topografía; 2) aleatoria, como las precipitaciones; y 3) manejada, como la 

aplicación de agroquímicos. La interacción entre estas fuentes de heterogeneidad provoca la 

variación que se observa en los cultivos. Considerando  dicha variabilidad, surgió a finales del siglo XX 

la Agricultura de Precisión, consistente en la aplicación de técnicas  geoespaciales para el manejo del 

cultivo de manera que se incremente la eficiencia mediante la aplicación de insumos sólo dónde y 

cuándo sean necesarios y en la cantidad requerida (Robert 2002). Esta forma de afrontar la 

producción agrícola hace que la agricultura de precisión ofrezca grandes ventajas en lo referente a 

sostenibilidad, calidad de las cosechas, protección medioambiental, seguridad alimentaria, desarrollo 

económico rural, calidad de vida en las zonas rurales, rentabilidad y productividad (Liaghat 2010). Los 
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protocolos  para la implementación de la agricultura de precisión pueden ser resumidos en tres 

pasos generales (Liaghat 2010): 1) recopilación de información sobre la variabilidad; 2) procesado y 

análisis de la información para comprenderla; y 3) implementación de cambios en el manejo de los 

insumos.  

En el caso de SSWM, los últimos años se ha avanzado en las etapas 2 y 3 (toma de decisiones y 

aplicación localizada de herbicidas), de tal forma que hay maquinaria agronómica disponible para 

realizar con éxito ambas fases. Sin embargo, el paso 1) es decir, la monitorización de las malas 

hierbas en los cultivos es aún uno de los componentes críticos para la adopción de SSWM y está 

identificado a nivel empresarial y científico como el principal cuello de botella de esta tecnología. La 

razón fundamental es que los tratamientos se realizan habitualmente en post-emergencia, en 

estados fenológicos tempranos del cultivo y malas hierbas, en base a las infestaciones presentes que 

son muy diversas y que varían según cultivos y épocas del año. Dada la complejidad de estos 

tratamientos, la estimación o monitorización de las infestaciones de malas hierbas en estado de 

plántula es una cuestión a  resolver y un requisito crucial para el desarrollo de SSWM. Según la 

revisión de López Granados (2011), diversos autores manifiestan que la monitorización de las 

infestaciones de malas hierbas se puede realizar mediante técnicas de detección remota o próxima  

basándose en que: 1) existen (y son cuantificables) diferencias espectrales entre las malas hierbas y 

el cultivo; 2) la resolución espacial (tamaño del píxel) de las imágenes es la adecuada para su 

discriminación; y 3) hay disponibilidad del tipo de imágenes con las resoluciones espacial y espectral 

que se requieren. A pesar de los numerosos trabajos reseñados en dicha revisión siguen sin solución 

las diferentes dificultades inherentes a la detección temprana de malas hierbas y se concluye que 

muchos estudios presentan resultados en condiciones muy limitadas (ej.: una mala hierba en un 

cultivo concreto; condiciones de iluminación muy específicas al momento de la toma de imágenes 

terrestres, entre otros) lo que reduce el interés comercial ya que cualquier herramienta que se 

desarrolle tendría un mercado muy restringido.  En el apartado 7 de esta Introducción se detallarán 

las investigaciones que recientemente se han publicado sobre cartografía de malas hierbas.  

En el desarrollo de técnicas VA para cultivos leñosos, se han realizado contribuciones 

científicas relevantes en lo referente a los tres pasos generales para la implementación de la 

agricultura de precisión: tanto en la recopilación de información sobre la variabilidad del cultivo 

(Rosell y Sanz 2012), como en la toma de decisiones en función de ésta y en la aplicación de 

tratamientos en base a estas decisiones (Doruchowski et al. 2009). De hecho, hay numerosas 

investigaciones que se basan  en la detección on-ground o próxima, ya sea mediante sensores 

ultrasónicos (Hu y Fu 2012; Zaman y Schumann 2005) o LiDAR (Arnó et al. 2012; Escolà et al. 2016; 

Méndez et al. 2013; Rosell et al. 2009). Sin embargo, hasta el momento existe escasa bibliografía 
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(Burgos et al. 2015; Zarco-Tejada et al. 2014) sobre la adquisición de información para determinar la 

variabilidad morfológica del cultivo desde plataformas aéreas y las ventajas que esta podría aportar. 

Esta  carencia está ligada al hecho de que hasta hace unos pocos años las plataformas aéreas 

disponibles no cumplían con los requisitos necesarios en cuanto a resolución espacial para estas 

tareas. En el apartado 8 de esta Introducción se detallarán las investigaciones que recientemente se 

han publicado sobre monitorización 3D de cultivos leñosos.  

La presente Tesis Doctoral se ocupa del primero de los pasos en la agricultura de precisión, la 

adquisición de información georreferenciada, centrándose en el uso de Teledetección como uno de 

los métodos que más se han extendido para ello. Asimismo, se presentarán los trabajos realizados 

para abordar el segundo paso y la toma de decisiones para el control localizado de malas hierbas.  

3. TELEDETECCIÓN EN AGRICULTURA 

La teledetección es la ciencia que se ocupa de obtener e interpretar información desde la 

distancia mediante sensores que no están en contacto con el objeto de observación (Jensen 2006). 

Esta forma de recolectar información tiene ventajas únicas (Jensen 2006) que son de gran 

importancia en la agricultura y entre las que cabe destacar:  

- Es un método no destructivo. 

- Los datos pueden ser obtenidos sistemáticamente sobre grandes áreas en vez de mediante 

muestreos de puntos singulares. 

- La adquisición de datos sistemática puede eliminar el sesgo de los muestreos. 

- Permite generar información de lugares que no son accesibles. 

Por lo anterior, la teledetección es una herramienta ampliamente utilizada en la agricultura y 

la agronomía con diferentes propósitos (Atzberger 2013). Según Becker-Reshef et al. (2010), la 

investigación y el desarrollo de la monitorización de la agricultura con imágenes de satélite empezó a 

comienzos de los 70 del siglo pasado debido a que una drástica carestía de trigo en Rusia atrajo la 

atención sobre la importancia de tener estimaciones sobre la producción agrícola de manera exacta y 

a tiempo. Como resultado, en 1974 el USDA junto a la NASA y NOAA iniciaron un experimento para 

mejorar los métodos de predicción de cosecha. Desde ese momento, la teledetección ha sido 

frecuentemente utilizada en estudios agrícolas. Por citar algunos de ellos, se ha cartografiado una 

gran variedad de factores (Lee et al. 2010) incluyendo el estado del cultivo (Houborg et al. 2009), las 

propiedades del suelo (López-Granados et al. 2005), el contenido de agua (Meron et al. 2010), la 

distribución de malas hierbas (de Castro et al. 2013), la detección de enfermedades (de Castro et al. 

2015), entre otros. Los aviones tripulados y los satélites han sido las principales plataformas remotas
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utilizadas para obtener imágenes y facilitar la toma de datos a escala local o global. Sin embargo, los 

continuos avances y mejoras en plataformas no tripuladas junto al desarrollo de sensores 

susceptibles de ser embarcados en ellas, han proporcionado grandes oportunidades para su 

aplicación en teledetección. 

4. VEHÍCULOS AÉREOS NO TRIPULADOS: CARACTERÍSTICAS DE LAS 

IMÁGENES  

Tradicionalmente, la teledetección ha sido asociada con satélites o aviones tripulados con 

sensores a bordo. Sin embargo, estas plataformas presentan carencias para el desarrollo de muchos 

aspectos de la agricultura de precisión debido a sus limitaciones para proporcionar imágenes de 

adecuadas resoluciones espacial y temporal, y a que se ven fuertemente afectadas por las 

condiciones meteorológicas en el momento de la toma de imágenes (Herwitz et al. 2004). Los 

drones, UAV o RPAS (por las siglas en inglés de Unmanned Aerial Vehicle o Remotely Piloted Aerial 

Systems) son plataformas aéreas cuya principal característica es la ausencia de piloto, aparte de esto, 

pueden ser remotamente controladas, autónomas, semi-autónomas o presentar una combinación de 

estas características (Eisenbeiss 2009). Como todos los desarrollos en teledetección, los UAVs 

tuvieron sus inicios en el ámbito militar, pero los avances en electrónica y miniaturización junto a la 

bajada de sus precios, han hecho posible que se extienda su uso a aplicaciones civiles. Los UAVs 

ofrecen las siguientes ventajas como plataformas para la teledetección: 

 Versatilidad y flexibilidad. Los recientes progresos en electrónica, customización y 

miniaturización han hecho posible que haya un gran abanico de sensores disponibles para ser 

embarcados en un UAV (Tabla 1). Estos sensores tienen la ventaja de que pueden ser 

intercambiados o instalados simultáneamente con facilidad en la mayoría de las ocasiones. 

Esto contrasta con los satélites, en los que no es posible cambiar de sensor, y con los aviones 

tripulados, en los que el mayor coste de los sensores embarcados hace que no todas las 

empresas de toma de imágenes puedan ofrecer un amplio rango de sensores. 

 Costes más asumibles que las plataformas tradicionales (Hardin y Jensen 2011), con lo que se 

puede obtener información multitemporal dentro de una temporada de cultivo, pudiéndose 

así realizar un seguimiento y evaluación exhaustivos del mismo que permitan la adopción de 

medidas  en el momento preciso. 

 Pueden operar rápidamente sin necesidad de planificación previa, esto es de gran 

importancia ya que en agricultura la ventana temporal de actuación es en ocasiones muy 

estrecha ya que puede ser necesario adquirir información y evaluarla para tomar medidas en 

un breve margen de tiempo. Esto no es posible con los satélites debido a que sus periodos de 
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revisita sobre áreas concretas están establecidos de antemano y no pueden ser cambiados. 

Además, los satélites con mayor frecuencia de revisita suelen ser aquellos que tienen menor 

resolución espacial. En el caso de los vuelos tripulados, las imágenes son normalmente 

obtenidas por un número limitado de empresas que poseen los aviones y sensores, por lo 

tanto es necesario concertar la toma de datos con una gran antelación. Ello contrasta con los 

condicionantes propios de la agricultura ya que no siempre es posible conocer con precisión 

el momento en que se deberán tomar los datos. 

Tabla 1. Sensores a borde de UAVs en la bibliografía. Adaptado de (Pajares 2015)

Auxiliares Específicos
GPS Cámaras de vídeo (espectro visible) Cámaras térmicas
IMU Cámaras fotográficas (espectro visible) Colectores electrostáticos

Giroscopios Cámaras multiespectrales Higrómetros
Estabilizadores Cámaras hiperespectrales Termómetros

Altímetros LIDAR Barómetros
Acelerómetros Radar/SAR Sonar

Radiómetros Contadores de partículas
Nariz electrónica Sensores magnéticos

Detectores de gases Detectores de humo

 Pueden volar bajo las nubes, facilitando la generación de información mediante la 

teledetección en zonas con gran cobertura nubosa a lo largo del todo el año, en las que esta 

incidencia meteorológica impedía o dificultaba la toma de imágenes por parte de satélites y 

aviones tripulados.  

 Pueden volar a bajas alturas y velocidades, lo que permite adquirir datos de alta resolución 

espacial y ver pequeñas plantas y rodales así como detalles del follaje de los cultivos leñosos, 

lo que no había sido posible con anterioridad (Xiang y Tian 2011). 

Debido a la baja altura de vuelo que permite conseguir resoluciones espaciales muy altas, las 

imágenes procedentes de los UAVs abarcan normalmente una superficie reducida y menor que la 

superficie que suelen tener las parcelas. Por tanto, al igual que en los vuelos fotogramétricos 

tradicionales, suele ser necesario realizar rutas de vuelo con diferentes pasadas sobre el cultivo 

objeto de estudio, a fin de tomar una secuencia o colección de imágenes que deben poseer 

solapamiento transversal y longitudinal y que deben ser combinadas para obtener una única imagen 

del campo. Para unir todas las imágenes y obtener lo que se conoce como la ortofoto completa de la 

parcela, hay que realizar un proceso de ortorrectificación y posterior “mosaicado” (mosaicking en 

inglés). Uno de los aspectos clave durante el diseño del plan de vuelo para conseguir un mosaicado 

correcto es determinar el porcentaje de solapamiento que requiere cada objetivo agronómico. A fin 

de que la ortofoto sea de utilidad para los propósitos para los que se ha generado, es necesario 

asegurar que tendrá la métrica y la precisión necesarias para que los errores de georreferenciación 
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estén minimizados al máximo y no afecten a las técnicas análisis de imagen que le serán aplicadas 

(Laliberte et al. 2010). 

5. VEHÍCULOS AÉREOS NO TRIPULADOS: APLICACIONES EN AGRICULTURA 

Las ventajas comentadas previamente han hecho que el número de usos civiles de los UAVs no 

pare de crecer y parezca casi ilimitado. Una gran cantidad de estas aplicaciones puede observarse en 

diversas revisiones bibliográficas que sobre los UAVs se han publicado recientemente: Colomina y 

Molina (2014); Pajares (2015); Shahbazi et al. (2014); Whitehead et al. (2014). Sin embargo, en esta 

Tesis Doctoral nos vamos a centrar en sus aplicaciones a la agricultura.  

Como se ha indicado en párrafos anteriores, el UAV puede ser programado a voluntad del 

usuario, puede volar con gran flexibilidad y tomar imágenes de cultivos en momentos críticos del 

periodo de crecimiento, mejorando por tanto los procesos de toma de decisiones de los agricultores 

(Lelong et al. 2008). Los últimos años, los UAVs han sido utilizados para un gran abanico de 

aplicaciones en agricultura, del que pueden servir como muestra los siguientes ejemplos: medición 

de parcelas de cultivo ( Mesas-Carrascosa et al. 2014), generación de mosaicos multiespectrales para 

agricultura de precisión (Mesas-Carrascosa et al. 2015), estudio del estado hídrico de viñedos (Baluja 

et al. 2012); caracterización de la cubierta de viña (Ballesteros et al. 2015; Mathews y Jensen 2013); 

estudio de la variabilidad espacial y composición de la uva (Rey-Caramés et al. 2015); estimación de 

biomasa y contenido de nitrógeno en cultivos (Geipel et al. 2016); detección de enfermedades 

(Calderón et al. 2013; Garcia-Ruiz et al. 2013); monitorización del crecimiento de cultivos herbáceos 

(Bendig et al. 2013); cálculo del índice de área foliar (Mathews y Jensen 2013).  

En definitiva, la bibliografía consultada concluye que los sistemas UAVs proporcionan 

resultados prometedores para la agricultura de precisión e identifican varios aspectos clave para la 

elección del equipo: máxima carga de pago, fiabilidad y estabilidad de la plataforma, capacidad del 

sensor, autonomía de vuelo y su maniobrabilidad, entre otras (Hardin y Hardin 2010; Hardin y Jensen 

2011; Laliberte et al. 2010), así como para programar la misión (altitud de vuelo, porcentaje de 

solapamiento) para acometer cada uno de los objetivos agronómicos que se planteen.

6. ANÁLISIS DE IMAGEN ORIENTADO A OBJETOS 

Como se puede ver en la figura 2, con el incremento en la resolución espacial de las imágenes 

alcanzado en los últimos años, se ha evolucionado de situaciones en las que las entidades a detectar 

y los píxeles de la imagen eran de tamaños parecidos (Figura 2a) a imágenes en que cada una de 

estas entidades está compuesta por multitud de píxeles (Figura 2b). Por tanto, en imágenes de muy 

alta resolución espacial como las obtenidas por sensores a bordo de UAVs para aplicaciones 
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agrícolas, uno de los problemas inherentes del análisis de las imágenes es que los píxeles ya no 

representan las características de los objetivos de la clasificación (Yu et al. 2006). Es decir, estas 

imágenes presentan una mayor variabilidad intra-clase (Aplin 2006; Woodcock y Strahler 1987) y, 

consecuentemente, una reducción en la separabilidad estadística entre clases si se usan métodos de 

clasificación tradicionales basados tan sólo en los valores espectrales de los píxeles. Ello puede llevar 

a una reducción en la precisión de clasificación en comparación a la obtenida en imágenes de menor 

resolución (Yu et al. 2006). Por tanto, la simple aplicación de las metodologías basadas en píxeles 

utilizadas tradicionalmente en el análisis de las imágenes de satélite o de aviones tripulados puede 

no ser la forma más satisfactoria de desarrollar las aplicaciones de UAVs para la agricultura (Hunt et 

al. 2013). 

Figura 2. Ejemplo sobre una imagen de olivar de la relación entre objetos y resolución espacial de las imágenes 

en teledetección: a) píxel de 2 m, b) píxel de 5 cm. Adaptado de (Blaschke 2010). 

Para solucionar esta variabilidad espectral intra-clase, un nuevo paradigma ha surgido en los 

últimos años, el análisis de imagen orientado a objetos (OBIA por las siglas en inglés de Object-

Based Image Analysis), cuyo uso se ha venido extendiendo entre la comunidad de investigadores 

dedicados a la teledetección desde el año 2000 (Blaschke 2010). Los objetos son agrupaciones de 

píxeles adyacentes y fueron definidos por  Hay et al. (2001) como entidades básicas de las imágenes, 

donde cada grupo de píxeles está compuesto de valores digitales similares que poseen de manera 

intrínseca una forma, tamaño, y relación con los demás componentes de la escena que modela. Por 

tanto, los objetos son más homogéneos espectralmente en su interior que con respecto a sus 

vecinos. De esta manera se ha progresado del análisis de la imagen utilizando el píxel, en el que la 

única información disponible para la clasificación era el valor espectral de cada píxel (o también la 

textura en caso de que se aplicaran análisis por kernels o ventanas), al análisis por objetos en el que 

cada uno de ellos tiene información espectral más amplia (ya que se le añaden valores medios, 

desviaciones típicas, ratios entre medias, entre otros estadísticos) y además información espacial, 
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contextual y jerárquica. Tal y como se puede ver en la figura 3, la información contextual hace 

referencia a las relaciones que existen entre un objeto y sus vecinos, y la información jerárquica se 

refiere al hecho de que se pueden establecer distintos niveles de objetos en los que estos se van 

agrupando de manera que en niveles superiores se pueden establecer comparaciones entre los 

objetos de un grupo con los de otro (Figura 3). Por tanto, el primer paso de los procedimientos OBIA 

es la segmentación en objetos de la imagen.  

Sin embargo, la segmentación no es un fin en sí misma de tal forma que existen otros pasos 

importantes en el análisis OBIA que se pueden dividir en las siguientes fases: 1) segmentar una 

imagen automáticamente en objetos; 2) combinar su información espectral, contextual, morfológica 

y jerárquica; y 3) clasificar la imagen usando los objetos como unidades mínimas de trabajo (Blaschke 

2010). Para realizar la clasificación de la imagen se deben tener en cuenta qué características de los 

objetos son las que pueden aportar mayor información para una clasificación correcta, teniendo en 

cuenta que estas características variarán de un problema de clasificación a otro. Además y con el fin 

de conseguir buenos resultados, el analista de imágenes debe plasmar su conocimiento y su forma 

de reconocer los objetos en algoritmos que imiten la manera en que el cerebro humano reconoce los 

objetos en el mundo real. Una vez logrado lo anterior, se alcanza otra de las ventajas del OBIA, la 

transferibilidad de los algoritmos (Laliberte et al. 2011). En otras palabras, el objetivo último es que 

una vez que un algoritmo se ha desarrollado para cierta aplicación en una zona concreta, pueda ser 

transferido con pequeños cambios para su utilización con el mismo objetivo en otras áreas.

Las técnicas OBIA han sido utilizadas con éxito en diferentes aplicaciones dentro del ámbito de 

la teledetección como clasificación de usos del suelo en zonas mixtas de terreno urbano y agrícola 

(Ma et al. 2015), análisis de campos de refugiados (Tiede et al. 2010), detección de canales de agua 

en humedales (Moffett y Gorelick 2013), clasificación de árboles y arbustos en zonas forestales 

(Hellesen y Matikainen 2013), o clasificación de manglares (Heumann 2011). Dentro del ámbito de la 

agricultura, el paradigma OBIA también ha sido aplicado a diversos objetivos como por ejemplo la 

cartografía de cultivos (Castillejo-González et al. 2009; Peña-Barragán et al. 2011), la detección de 

líneas de cultivo (Peña-Barragán et al. 2012) o la caracterización de viñedos (Mathews 2014); siendo 

además estos dos últimos ejemplos casos de aplicación de la metodología OBIA a información 

obtenida mediante UAVs en agricultura 
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Figura 3. Representación gráfica de las relaciones entre objetos, ejemplo con parcela de cultivo herbáceo. 

7. CARTOGRAFÍA DE MALAS HIERBAS EN FASE TEMPRANA 

Como se ha mencionado anteriormente, un control eficiente y a tiempo de las malas hierbas 

en cultivos en post-emergencia temprana es una tarea crítica debido a que un uso inapropiado de 

herbicidas y por tanto un manejo inadecuado de las malas hierbas pueden originar una reducción en 

el rendimiento y un incremento de potenciales impactos negativos en el medioambiente. Muestra de 

ello es el hecho de que los herbicidas sean el grupo de fitosanitarios más frecuentemente detectado 

en análisis de aguas subterráneas y superficiales  (Carter 2000). El riesgo de contaminación del agua y 

del medioambiente en general podría ser reducido mediante el SSWM dirigiendo las aplicaciones 

herbicidas únicamente a los rodales de malas hierbas presentes en el cultivo.  

El control deficiente de las malas hierbas está relacionado en ocasiones con un uso incorrecto 

de los herbicidas resultante de tres problemas principales. El primero es aplicar herbicidas cuando las 

malas hierbas no están en el momento fenológico adecuado (generalmente cuando tienen de 2 a 6 

hojas verdaderas, aunque depende de la especie o grupo de especies), el segundo es la aplicación de 

herbicidas sin considerar ningún umbral de aplicación (i.e., el nivel de infestación por encima del cual 

es necesario tratar (Swanton et al. 1999), y el tercero es aplicar herbicidas sobre todo el campo, 

incluso cuando hay zonas libres de malas hierbas debido a su distribución en rodales (Jurado-

Expósito et al. 2003; Jurado-Exposito et al. 2005). El primer inconveniente es normalmente resuelto 

mediante la experiencia de los agricultores o técnicos. Los otros dos problemas pueden ser 

solucionados mediante el desarrollo de estrategias SSWM de acuerdo a umbrales de infestación 
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(Longchamps et al. 2014). Estas estrategias pueden consistir en un tratamiento con un solo herbicida 

a los rodales donde sólo un grupo de malas hierbas está presente (por ejemplo de hoja estrecha o de 

hoja ancha), o en el uso de varios herbicidas de acuerdo a la presencia de especies resistentes o 

diferentes especies de malas hierbas o de diferentes grupos o una mala hierba específica 

problemática como Orobanche, la cual puede ser un serio problema en la producción del girasol 

(García-Torres et al. 1994; Molinero-Ruiz et al. 2014). Las estrategias de control localizado, además 

de tener incidencia sobre la producción del cultivo y el medioambiente, podrían tener un fuerte 

impacto económico al ayudar a reducir la inversión que los agricultores realizan en herbicidas, la cual 

representó alrededor el 36% del gasto total en fitosanitarios en España en 2015 (AEPLA 2016), y en 

torno al 28% del consumo total medio en toneladas de productos fitosanitarios en el periodo 1999-

2014 (Figura 4).  

Figura 4. Comparación entre el consumo de herbicidas y el resto de fitosanitarios en España en el periodo 1999-

2014 (Instituto Aragonés de Estadística 2016) 

Para llegar a aplicar métodos SSWM, en primer lugar es necesario proceder a la detección y 

cartografía de las infestaciones de malas hierbas. Éstas pueden ser afrontadas de dos maneras, 

mediante la detección próxima desde vehículos terrestres que recorren el campo o mediante la 

detección remota desde satélite o plataformas aéreas (López-Granados 2011). Los orígenes de la 

teledetección de malas hierbas desde plataformas aéreas se pueden situar en Thornton et al. (1990)  

en una investigación preliminar de técnicas de vigilancia aérea usando un globo de helio a baja altura 

para tomar imágenes de la distribución de la avena loca en un campo de trigo.  

De forma general, la discriminación de las malas hierbas mediante detección remota (o 

teledetección) puede abordarse según dos aproximaciones metodológicas diferentes: considerando 
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las malas hierbas en estado fenológico temprano (desde el estado de plántula hasta 2 - 6 hojas 

verdaderas) o en estado fenológico tardío (desde el inicio de la floración o inicio de senescencia). 

Utilizando esta última aproximación, se han obtenido resultados satisfactorios en la detección de 

malas hierbas utilizando imágenes aéreas (López-Granados et al. 2006; Peña-Barragán et al. 2007) y 

de satélite (Castillejo-González et al. 2014; de Castro et al. 2013), reportándose ahorros en herbicida 

de hasta el 50%. En estos trabajos se detectaban las malas hierbas en fase tardía para aplicar el 

herbicida al año siguiente en época temprana ya que en la mayoría de los escenarios agrícolas  el 

momento óptimo para el control de las malas hierbas es  justo unas pocas semanas después de la 

emergencia del cultivo. Esta idea se basa en que las malas hierbas persisten en su localización de un 

año para otro si no se controlan (Barroso et al. 2004; Jurado-Expósito et al. 2004). Sin embargo, si el 

objetivo es detectar infestaciones de malas hierbas en fase temprana, las dificultades son mayores 

que en el caso de la fase tardía principalmente por las siguientes tres razones (López-Granados 

2011): 1) las malas hierbas son de pequeño tamaño, lo que hace necesario trabajar con imágenes 

remotas de gran resolución espacial, a veces píxeles < 5 cm (Robert 1996); 2) las malas hierbas de 

hoja estrecha presentes en los cultivos monocotiledóneos (e.g., avena en trigo) o las malas hierbas 

de hoja ancha en cultivos dicotiledóneos (e.g., Chenopodium en girasol), generalmente tienen 

propiedades espectrales parecidas en fase temprana, lo que disminuye la posibilidad de discriminar 

entre clases de vegetación usando sólo información espectral; y 3) la reflectancia del suelo puede 

interferir con la detección (Thorp y Tian 2004).  

Los problemas comentados anteriormente han ocasionado que, cuando sólo se podía trabajar 

con imágenes procedentes de satélites y aviones tripulados, la teledetección en fase temprana de 

malas hierbas para el desarrollo de estrategias de control localizado no fuera posible. Hoy en día la 

tecnología UAV ha hecho que la necesidad de una resolución espacial centimétrica ya no sea una 

limitación. Asimismo, la gran flexibilidad existente en la programación de vuelos permite que se 

tomen las imágenes en el momento que el agricultor estime más adecuado para la detección y 

posterior tratamiento de las malas hierbas. Para afrontar los problemas de separabilidad espectral es 

la tecnología OBIA la que aporta las herramientas necesarias para la adecuada clasificación de las 

malas hierbas, permitiendo su discriminación del cultivo utilizando parámetros que van más allá de la 

información espectral. De hecho, con anterioridad a esta Tesis Doctoral, algunos trabajos con UAV ya 

habían abordado objetivo parecidos, como la distribución de malas hierbas acuáticas (Göktoǧan et al. 

2010) o la invasión de plantas en la monitorización de grandes fincas (Laliberte et al. 2011), trabajo 

en el que se incorporó, además de tecnología UAV, una metodología OBIA. 
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8. MONITORIZACIÓN 3D DE CULTIVOS LEÑOSOS  

Tras exponer los conceptos básicos del SSWM en relación a la teledetección mediante 

imágenes-UAV, a continuación se explican los fundamentos en los que se basa la importancia de 

monitorizar de forma precisa la arquitectura 3D de los cultivos leñosos. Los resultados en olivar de 

Miranda-Fuentes et al. (2016) han demostrado que carece de base científica la extendida creencia de 

que aumentar el volumen de aplicación mejora la homogeneidad y la penetración de la aplicación en 

la copa, ya que los valores óptimos de cobertura en su estudio se obtuvieron utilizando los 

volúmenes de aplicación más bajos. Pero además, la aplicación de fitosanitarios necesita ser precisa 

porque los tratamientos inadecuados pueden llevar a serios problemas como la contaminación 

medioambiental, la presencia de residuos en los alimentos y  problemas de salud en los responsables 

de la aplicación. Los tratamientos que se realizan sin tener en cuenta la variabilidad espacial de la 

arquitectura foliar de los cultivos leñosos pueden contribuir a la contaminación de acuíferos y aguas 

subterráneas. Sin embargo, los agricultores a menudo aplican los productos hasta que se produce 

escorrentía como supuesta garantía de alta eficacia biológica.  

El uso del volumen de copa de los cultivos como base para el cálculo y optimización de las 

aplicaciones de productos químicos fue discutido y evaluado por Sutton y Unrath (1984). El concepto 

del volumen del seto de árboles mantiene que la tasa de aplicación de productos químicos debe 

estar basada en el volumen del cultivo en vez de en su área. Siguiendo esta metodología desarrollada 

en manzanos, se han obtenido resultados satisfactorios para adaptar el volumen de aplicación a las 

dimensiones en el caso del viñedo (Llorens et al. 2010; Pergher y Petris 2008). En los casos 

mencionados, una medición precisa de las dimensiones del cultivo fue vital para el éxito final. En el 

caso de olivar, el desafío de los árboles aislados y con gran volumen de copa, como es el caso tanto 

de los olivares tradicionales como de los intensivos, es que la forma irregular de la copa hace difícil la 

implementación de los métodos establecidos para la estimación de su volumen (Miranda-Fuentes et 

al. 2016). Normalmente, las principales dimensiones del árbol son medidas de manera manual con 

un intenso trabajo de campo. A continuación, el volumen de copa es estimado con modelos 

empíricos o con ecuaciones que consideran que los árboles son sólidos geométricos (West 2009). Sin 

embargo, realizar estos muestreos a escala de campo exige una inversión de tiempo considerable y 

generalmente se generan resultados inciertos debido a la falta de ajuste de los árboles reales a los 

modelos geométricos, o a la gran variabilidad presente en los cultivos que puede afectar la 

adecuación de modelos basados en mediciones en campo.  

Entre las alternativas tecnológicas, los escáneres LiDAR y los sistemas de visión estereoscópica 

ya sea desde el terreno o embarcados en plataformas aéreas convencionales han sido hasta la fecha 

los métodos más relevantes (Arnó et al. 2012; Escolà et al. 2016; Rosell y Sanz 2012), aunque estas 
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técnicas también presentan también  sus limitaciones en condiciones de campo. Por una parte, 

aunque los equipos terrestres son muy precisos en la medición de la arquitectura arbórea 

(Fernández-Sarría et al. 2013; Moorthy et al. 2011; Rovira-Más et al. 2008), son menos eficientes en 

grandes superficies de terreno y no son fáciles de usar en áreas de difícil acceso. Por otra parte, la 

resolución espacial de los datos tomados con aviones tripulados y satélites es aún insuficiente para 

detectar las características 3D de los árboles en la mayoría de los casos (Rosell y Sanz 2012). 

Como se ha comentado en esta Introducción, los UAVs pueden volar automáticamente a baja 

altura y con gran solape. Ello  permite la toma de imágenes de muy alta resolución espacial (en el 

rango de centímetros) y facilita la generación de modelos digitales de superficies (MDS) mediante 

métodos automáticos de reconstrucción basados en los modelos “Structure from Motion”. Lo 

anterior es relevante ya que investigaciones recientes se han centrado en la generación de MDSs con 

UAVs (Nex y Remondino 2014) y su interpretación sobre áreas agrícolas para la caracterización 

tridimensional de cultivos herbáceos y leñosos con el objetivo de monitorizar el estado del cultivo y 

su crecimiento (Bendig et al. 2014; Burgos et al. 2015).  

Sin embargo, para explotar al máximo la tecnología UAV hay que incorporar la adopción de 

procedimientos automáticos y robustos de análisis de imagen que sean capaces de extraer la 

inmensa cantidad de información que ofrecen las imágenes. Para alcanzar un alto nivel de 

automatización y adaptabilidad en esta Tesis Doctoral se propone la aplicación de técnicas OBIA. 

9. OBJETIVOS DE LA TESIS DOCTORAL 

Por todo lo recogido anteriormente, el objetivo general de la presente Tesis ha sido el 

desarrollo de metodologías automatizadas y robustas para la cartografía de malas hierbas en cultivos 

herbáceos en fase temprana y la monitorización tridimensional de cultivos leñosos, con el fin último 

de contribuir a la implementación de estrategias de técnicas de aplicación variable en el ámbito de la 

agricultura de precisión que permitan un uso sostenible de los productos fitosanitarios.  

Este objetivo general se ha desarrollado a través de los siguientes objetivos específicos: 

1. Estudiar la configuración y las especificaciones técnicas de un UAV y de los sensores 

embarcados para su aplicación en la detección temprana de malas hierbas y contribuir a la 

generación de mapas para un control localizado.  

2. Evaluar los índices espectrales en el rango visible existentes en la literatura científica para su 

uso en la discriminación de vegetación en imágenes tomadas con un UAV sobre cultivos de 

trigo  en fase temprana. 
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3. Implementar en un entorno OBIA un método de cálculo automático de umbrales para la 

detección de vegetación en imágenes procedentes de UAV tomadas en cultivos herbáceos en 

fase temprana.  

4. Desarrollar una metodología OBIA automática y robusta para la discriminación de malas 

hierbas en cultivos herbáceos en fase temprana, así como evaluar la influencia sobre su 

funcionamiento de distintos parámetros relacionados con la toma de imágenes UAV. 

5. Desarrollar una metodología OBIA automática y robusta para la caracterización 

tridimensional de cultivos leñosos usando imágenes y MDS generados a partir de imágenes 

procedentes de un UAV. 

La presente Tesis Doctoral está organizada en 9 capítulos: 

 En el capítulo 1 se estudian la configuración y las especificaciones de un UAV para la 

detección temprana de malas hierbas y contribuir a la generación de mapas para un control 

localizado, lo que corresponde al artículo: Torres-Sánchez, J., López-Granados, F., De Castro, 

A. I., & Peña-Barragán, J. M. (2013). Configuration and Specifications of an Unmanned Aerial 

Vehicle (UAV) for Early Site Specific Weed Management. PLoS ONE, 8(3), e58210. 

doi:10.1371/journal.pone.0058210.

 El capítulo 2 refleja el estudio de una serie de índices de vegetación para la cartografía de la 

fracción de vegetación en cultivos herbáceos usando imágenes UAV, que fue publicado en el 

artículo: Torres-Sánchez, J., Peña, J. M., de Castro, A. I., & López-Granados, F. (2014). Multi-

temporal mapping of the vegetation fraction in early-season wheat fields using images from 

UAV. Computers and Electronics in Agriculture, 103, 104–113. 

doi:10.1016/j.compag.2014.02.009.

 En el capítulo 3 se presenta la implementación en un entorno OBIA de un método 

automático de cálculo de umbrales y su aplicación a la detección de vegetación en imágenes 

UAV, trabajo correspondiente al artículo: Torres-Sánchez, J., López-Granados, F., & Peña, J. 

M. (2015). An automatic object-based method for optimal thresholding in UAV images: 

Application for vegetation detection in herbaceous crops. Computers and Electronics in 

Agriculture, 114, 43–52. doi:10.1016/j.compag.2015.03.019.

 En el capítulo 4 se desarrolla un algoritmo OBIA para la detección de malas hierbas en un 

cultivo de maíz en fase temprana usando imágenes tomadas por un UAV, recogido en el 

artículo: Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. 

(2013). Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of 

Unmanned Aerial Vehicle (UAV) Images. PLOS ONE, 8(10), e77151. 

doi:10.1371/journal.pone.0077151.
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 En el capítulo 5 se estudió la influencia de la resolución espectral  y espacial sobre el 

algoritmo para la detección de malas hierbas en fase temprana, reflejando el artículo: Peña, 

J. M., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., & López-Granados, F. (2015). 

Quantifying Efficacy and Limits of Unmanned Aerial Vehicle (UAV) Technology for Weed 

Seedling Detection as Affected by Sensor Resolution. Sensors, 15(3), 5609–5626. 

doi:10.3390/s150305609.

 En el capítulo 6 se aplicó el algoritmo anteriormente diseñado a ortoimágenes tomadas 

sobre campos de girasol, y se estudiaron los diferentes mapas prescripción de herbicida fruto 

de la aplicación de un rango de umbrales de tratamiento, trabajo que fue descrito en el 

artículo: López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., Castro, A. I. de, Mesas-

Carrascosa, F.-J., & Peña, J.-M. (2015). Early season weed mapping in sunflower using UAV 

technology: variability of herbicide treatment maps against weed thresholds. Precision 

Agriculture, 17(2), 183–199. doi:10.1007/s11119-015-9415-8.

 El capítulo 7 presenta una metodología para la caracterización tridimensional de cultivos 

arbóreos usando tecnología UAV, correspondiente al artículo: Torres-Sánchez, J., López-

Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-Throughput 3-D Monitoring 

of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLOS ONE, 

10(6), e0130479. doi:10.1371/journal.pone.0130479.

 En el capítulo 8 se aplica una metodología OBIA para la monitorización 3D de viñedos, 

trabajo presentado en el artículo: Torres-Sánchez, J., López-Granados, F., Jiménez-Brenes, 

F.M., Borra-Serrano, I., de Castro, A.I., Peña, J.M. (2016). 3-D vineyard monitoring with UAV 

images and a novel OBIA procedure for precision viticulture applications. Computers and 

Electronics in Agriculture, en revisión.

 Por último, en el capítulo 9, se enumeran las conclusiones generales obtenidas de los 

trabajos anteriormente descritos sobre tecnología UAV y el desarrollo de metodologías 

robustas para la cartografía de malas hierbas en cultivos herbáceos en fase temprana y la 

monitorización tridimensional de cultivos leñosos  con el fin último de contribuir a la 

implementación de estrategias de técnicas de aplicación variable en el ámbito de la 

agricultura de precisión que permitan un uso sostenible de los productos fitosanitarios. 
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1. RESUMEN 

Una nueva plataforma aérea para la toma de imágenes remotas ha surgido en los últimos 

años, el vehículo aéreo no tripulado (UAV por sus siglas en inglés). Este artículo describe la 

configuración y las especificaciones técnicas de un UAV utilizado para tomar imágenes para el control 

localizado de malas hierbas en fase temprana. También se ha evaluado si las imágenes tomadas por 

el UAV, al contrario que las tomadas por satélites y plataformas tripuladas, cumplen los requisitos 

necesarios para la detección en fase temprana de malas hierbas en cuanto a resolución espacial y 

espectral. Dos sensores diferentes, una camára convencional y una cámara multiespectral de 6 

bandas, y tres alturas de vuelo (30, 60 y 100 m) fueron evaluados sobre un campo de girasol 

naturalmente infestado de malas hierbas. Las principales fases del flujo de trabajo con el UAV fueron: 

1) planificación de la misión, que incluye consideraciones sobre el área a volar, las especificaciones 

del sensor y las tareas a realizar por el UAV; 2) vuelo UAV y toma de imágenes; y 3) 

preprocesamiento de las imágenes, que incluyó la correcta alineación de las seis bandas de la cámara 

multiespectral capturadas en cada vuelo. Del estudio de las imágenes se pudo extraer que la 

resolución espacial, el área cubierta por cada imagen y el tiempo de vuelo fueron muy sensibles a la 

altura de vuelo. A menor altitud, el UAV tomó imágenes de mayor resolución espacial, aunque el 

número de imágenes necesitado para cubrir el campo entero podría ser un factor limitante debido a 

la energía necesaria para una mayor duración de vuelo y a los requerimientos computacionales para 

el posterior mosaicado de las imágenes. A partir de las imágenes tomadas se calcularon tres índices 

espectrales. Las diferencias espectrales entre malas hierbas, cultivo y suelo fueron significativas para 

los índices de vegetación estudiados (ExG, NGRDI, NDVI), principalmente a 30 m de altura. Sin 

embargo, la mayor separabilidad espectral se dio para vegetación y suelo desnudo con el NDVI. Estos 

resultados sugieren que es necesario llegar a un balance entre la resolución espacial y espectral para 

optimizar el plan de vuelo de acuerdo al objetivo agronómico buscado, teniendo en cuenta el tamaño 

del menor objeto que se necesita detectar (malas hierbas individuales o rodales de malas hierbas). 

2. ABSTRACT 

A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle 

(UAV). This article describes the technical specifications and configuration of a UAV used to capture 

remote images for early season site- specific weed management (ESSWM). Image spatial and spectral 

properties required for weed seedling discrimination were also evaluated. Two different sensors, a 

still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) 
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were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the 

following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. 

Three different aspects were needed to plan the route: flight area, camera specifications and UAV 

tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral 

imagery and the orthorectification and mosaicking of the individual images captured in each flight. 

The image pixel size, area covered by each image and flight timing were very sensitive to flight 

altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the 

number of images needed to cover the whole field may be a limiting factor due to the energy 

required for a greater flight length and computational requirements for the further mosaicking 

process. Spectral differences between weeds, crop and bare soil were significant in the vegetation 

indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised 

Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was 

obtained between vegetation and bare soil with the index NDVI. These results suggest that an 

agreement among spectral and spatial resolutions is needed to optimise the flight mission according 

to every agronomical objective as affected by the size of the smaller object to be discriminated 

(weed plants or weed patches). 

3. INTRODUCTION 

Precision agriculture (PA) is defined as “a management strategy that uses information 

technology to bring data from multiple sources to bear on decisions associated with crop production”

(National Research Council (U.S.) 1997). PA encompasses all the techniques and methods for crop 

and field management by taking into account their local and site-specific heterogeneity and 

variability (Lelong et al. 2008). Within the context of PA, early season site-specific weed management 

(ESSWM) involves the development of techniques to detect the weeds growing in a crop and the 

application of new technologies embedded in specific agricultural machinery or equipment to control 

them successfully, taking action to maximise economic factors and reduce the environmental impact 

of the control measurements applied (Christensen et al. 2009). The efficient development of these 

practices somehow relies on the use of remote sensing technology for collecting and processing 

spatial data from sensors mounted in satellite or aerial platforms. This technology has been widely 

applied in agricultural studies, allowing the mapping of a variety of factors (Lee et al. 2010), including 

crop conditions (Houborg et al. 2009), soil properties (López-Granados et al. 2005), water content 

(Meron et al. 2010) and weed distribution (de Castro et al. 2012), among others. Piloted aircraft and 

satellites are traditionally the primary platforms used to obtain remote images for local to global 
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data acquisition. However, these platforms present problems for many aspects of precision 

agriculture because they are limited in their ability to provide imagery of adequate spatial and 

temporal resolutions and are strongly affected by weather conditions (Herwitz et al. 2004). In the 

case of ESSWM, good results have been obtained in late growth stages (normally at the flowering 

stage) using aerial (López-Granados et al. 2006; Peña-Barragán et al. 2007) and satellite (de Castro et 

al. 2013) images, with herbicide savings of more than 50% reported. Nevertheless, in most weed-

crop scenarios, the optimal weed treatment is recommended at an early growth stage of the crop, 

just a few weeks after crop emergence. In this stage, mapping weeds using remote sensing presents 

much greater difficulties than in the case of the late-stage season for three main reasons (López-

Granados 2011): 1) weeds are generally distributed in small patches, which makes it necessary to 

work with remote images at very small pixel sizes, often on the order of centimetres (Robert 1996); 

2) grass weeds and monocotyledonous crops (e.g., Avena spp. in wheat) or broad-leaved weeds and 

many dicotyledonous crops (e.g., Chenopodium spp. in sunflower) generally have similar reflectance 

properties early in the season, which decreases the possibility of discriminating between vegetation 

classes using only spectral information; and 3) soil background reflectance may interfere with 

detection (Thorp and Tian 2004). 

Today, difficulties related to spatial and temporal resolutions can be overcome using an 

Unmanned Aerial Vehicle (UAV) based remote sensing system, which has progressed in recent years 

as a new aerial platform for image acquisition. UAVs can fly at low altitudes, allowing them to take 

ultra-high spatial resolution imagery and to observe small individual plants and patches, which has 

not previously been possible (Xiang and Tian 2011). Moreover, UAVs can supply images even on 

cloudy days, and the time needed to prepare and initiate the flight is reduced, which allows greater 

flexibility in scheduling the imagery acquisition. Other advantages of UAVs are their lower cost, and 

the lower probability of serious accidents compared with piloted aircraft.  

Examples of applications of UAVs in agricultural studies are becoming more noticeable in the 

literature. For instance, Hunt et al. (2005) evaluated an aerobatic model aircraft for acquiring high-

resolution digital photography to be used in estimating the nutrient status of corn and crop biomass 

of corn, alfalfa, and soybeans. In other cases, an unmanned helicopter was tested to monitor turf 

grass glyphosate application (Xiang and Tian 2011), demonstrating its ability to obtain multispectral 

imaging. Other UAV models have been developed, such as the six-rotor aerial platform used by 

Primicerio et al. (2012) to map vineyard vigour with a multi-spectral camera. Recently, Zhang and 

Kovacs (2012) reviewed the advances in UAV platforms for PA applications. In this review, they 

indicated the phases in the production of the remote images (including acquisition, georeferencing 
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and mosaicking) and the general workflow for information extraction. Generally, all these authors 

concluded that these systems provide very promising results for PA and identified some key factors 

for equipment and system selection, such as maximum UAV payload capacity, platform reliability and 

stability, sensor capability, flight length and UAV manoeuvrability, among others (Hardin and Hardin 

2010; Hardin and Jensen 2011; Andrea S. Laliberte et al. 2010). 

To our knowledge, however, no detailed investigation has been conducted regarding the 

application of this technology in the field of ESSWM, in which remote images at centimetre-scale 

spatial resolution and a narrow temporal window for image acquisition are required (Gray et al. 

2008). Therefore, this paper defines the technical specifications and configuration of a quadrocopter 

UAV and evaluates the spatial and spectral requirements of the images captured by two different 

sensors (a commercial scale camera and a multispectral 6-channel camera) with the ultimate aim of 

discriminating weed infestations in a sunflower crop-field in the early growing season for post-

emergence treatments. Moreover, the steps for preparing and performing UAV flights with both 

cameras are described as well as the relationships amongst flight altitude, pixel size, sensor 

properties and image spectral information.  

4. MATERIALS AND METHODS 

4.1. UAV description 

A quadrocopter platform with vertical take-off and landing (VTOL), model md4-1000 

(microdrones GmbH, Siegen, Germany), was used to collect a set of aerial images at several flight 

altitudes over an experimental crop-field (Figure 1). This UAV is equipped with four brushless motors 

powered by a battery and can fly by remote control or autonomously with the aid of its Global 

Position System (GPS) receiver and its waypoint navigation system. The VTOL system makes the UAV 

independent of a runway, so it can be used in a wide range of different situations and flight altitudes. 

The UAV’s technical specifications and operational conditions, provided by the manufacturer, are 

shown in Table 1. 

The whole system consists of the vehicle, the radio control transmitter, a ground station with 

the software for mission planning and flight control, and a telemetry system. The radio control 

transmitter is a handheld device whose main tasks are to start the vehicle’s engines, manage take-off 

and landing, control the complete flight in the manual mode, and activate the autonomous 

navigation system. The control switchboard consists of several triggers, pushbuttons, scroll bars, a 

display, and an antenna, and it is equipped with a RF-module synthesiser, which enables the 
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selection of any channel in the 35 MHz band. The ground station works as an interface between the 

operator and the vehicle and includes the support software mdCockpit (MDC). MDC allow the UAV 

settings to be configured, implements the flight route plan with the Waypoint Editor (WPE) module, 

and monitors the flight. The telemetry system collects relevant flight data and retrieves a stream of 

information in a plain text scheme that includes GPS position data, attitude, altitude, flight time, 

battery level, and motor power output, among many others. All sensors and control devices for flight 

and navigation purposes are embedded on-board the vehicle and are managed by a computer 

system, which can listen telemetry data and make decisions according to the momentary flight 

situation and machine status, thus avoiding that occasional loss of critical communication between 

the UAV and the ground station resulting in the vehicle crashing. 

Figure 1. The quadrocopter UAV, model md4-1000, flying over the experimental crop-field. 
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Table 1. Technical specifications and operational conditions of the UAV, model md4-1000. 

UAV specification Value
Technical specifications

Climb rate 7.5 m/s
Cruising speed 15.0 m/s
Peak thrust 118 N
Vehicle mass 2.65 Kg approx. (depends on configuration)
Recommended payload mass 0.80 Kg
Maximum payload mass 1.25 Kg
Maximum take-off weight 5.55 Kg
Dimensions 1.03 m between opposite rotor shafts
Flight time Up to 45 min (depends on payload and wind)

Operational conditions
Temperature - 10º C to 50º C
Humidity Maximum 90%
Wind tolerance Steady pictures up to 6 m/s
Flight radius Minimum 500 m using radiocontrol, with waypoints up to 

40 km
Ceiling altitude Up to 1,000 m
Take-off altitude Up to 4,000 m about sea level

Source: UAV manufacturer (microdrones GmbH, Siegen, Germany).

Three persons were employed for the secure use of the UAV: a radio control pilot, a ground 

station operator and a visual observer. The radio control pilot manually takes off and lands the UAV 

and activates the programmed route during the flight operation. The ground station operator 

controls the information provided by the telemetry system, i.e., UAV position, flight altitude, flight 

speed, battery level, radio control signal quality and wind speed. The visual observer is on the 

lookout for potential collision threats with other air traffic. 

4.2. Sensors description 

The md4-1000 UAV can carry any sensor weighing less than 1.25 kg mounted under its belly, 

although the maximum recommended payload is 0.80 kg. Two sensors with different spectral and 

spatial resolutions were separately mounted on the UAV to be tested in this experiment: a still point-

and-shoot camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan), and a six-band 

multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA). The 

Olympus camera acquires 12-megapixel images in true colour (Red, R; Green, G; and Blue, B, bands) 

with 8-bit radiometric resolution and is equipped with a 14-42 mm zoom lens. The camera’s sensor is 

4,032 × 3,024 pixels, and the images are stored in a secure digital SD-card. The mini-MCA-6 is a 

lightweight (700 g) multispectral sensor composed of six individual digital channels arranged in a 2×3 

array. The slave channels are labelled from “1” to “5”, while the sixth “master” channel is used to 

define the global settings used by the camera (e.g., integration time). Each channel has a focal length 
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of 9.6 mm and a 1.3 megapixel (1,280 × 1,024 pixels) CMOS sensor that stores the images on a 

compact flash CF-card. The images can be acquired with 8-bit or 10-bit radiometric resolution. The 

camera has user configurable band pass filters (Andover Corporation, Salem, NH, USA) of 10-nm full-

width at half-maximum and centre wavelengths at B (450 nm), G (530 nm), R (670 and 700 nm), R 

edge (740 nm) and near-infrared (NIR, 780 nm). These bandwidth filters were selected across the 

visible and NIR regions with regard to well-known biophysical indices developed for vegetation 

monitoring (Kelcey and Lucieer 2012). Image triggering is activated by the UAV according to the 

programmed flight route. At the moment of each shoot, the on-board computer system records a 

timestamp, the GPS location, the flight altitude, and vehicle principal axes (pitch, roll and heading). 

4.3. Study site and field sampling 

The UAV system was tested in a sunflower field situated at the private farm La Monclova, in La 

Luisiana (Seville, southern Spain, coordinates 37.527N, 5.302W, datum WGS84). The flights were 

authorized by a written agreement between the farm owners and our research group. We selected 

sunflower because this is the major oil-seed crop grown in Spain, with a total surface of 850,000 ha in 

2012 (MAGRAMA 2012)  [25], and because weed control operations (either chemical or physical) 

with large agricultural machinery represent a significant proportion of production costs, create 

various agronomic problems (soil compaction and erosion) and represent a risk for environmental 

pollution. The sunflower seeds were planted at the end of March 2012 at 6 kg ha-1 in rows 0.7 m 

apart. The set of aerial images were collected on May 15th, just when post-emergence herbicide or 

other control techniques are recommended in this crop. Several visits were periodically made to the 

field from crop sowing to monitor crop growth and weed emergence and, finally, to select the best 

moment to take the set of remote images. The sunflower was at the stage of 4-6 leaves unfolded. 

The weed plants had a similar size or, in some cases, were smaller than the crop plants (Figure 1).  

An experimental plot of 100×100 m was delimited within the crop-field to perform the flights. 

The coordinates of each corner of the flight area were collected using GPS to prepare the flight route 

in the mission-planning task. A systematic on-ground sampling procedure was carried out the day of 

the UAV flights. The procedure consisted of placing 49 square white frames of 1×1 m distributed 

regularly throughout the studied surface (Figure 2A). Every frame was georeferenced with a GPS and 

photographed in order to compare on-ground weed infestation (observed weed density) and outputs 

from image classification (estimated weed density). These numbered cards were also utilised as 

artificial terrestrial targets (ATTs) to perform the imagery orthorectification and mosaicking process. 

In the course of the UAV flights, a barium sulphate standard spectralon® panel (Labsphere Inc., North 
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Sutton, NH, USA) of 1×1 m was also placed in the middle of the field to calibrate the spectral data 

(Figure 2B). 

Figure 2. Details of the experimental set. a) 1x1 m frame used in the ground-truth field sampling, and b) 

reference panel for image spectral calibration. 

4.4. UAV flight and sensors tests 

4.4.1.  Mission planning 

The flight mission was planned with the WPE module of the MDC software installed at the 

ground station. The flight route was designed over the orthoimages and the digital elevation model 

(DEM) of the flight area previously imported from the application Google EarthTM (Keyhole Inc., 

Mountain View, CA, USA). Three different parameters were needed to plan the route: flight area, 

camera specifications and UAV tasks (Table 2). The flight area information includes width and length, 

the direction angle of the main side, and the desired overlap in the imagery. The images were 

acquired at 60% forward-lap and 30% side-lap. The camera specifications are the focal length and the 

sensor size. The UAV tasks refer to the actions that the UAV has to perform once it arrives at each 

point for image acquisition, and it includes the number of photos and dwell time in each point. Once 

both, this information and the flight altitude were introduced in the WPE module, it automatically 

generated the flight route and estimated the flight duration according to the total number of images 

planned (Figure 3). The route file was exported to a memory card embedded in the UAV via a 

standard serial link.  
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Table 2. Data required by the Waypoint Editor software and the route settings used in the experimental field. 

Data type Setting value*

Flight area
Width 100 m
Length 100 m
Direction angle 65°
Horizontal overlapping 60 %
Vertical overlapping 30 %

Camera specifications
Focal length

RGB camera 14 mm
Multispectral camera 9.6 mm

Sensor size (width x length)
RGB camera 17.3 x 13 mm
Multispectral camera 6.66 x 5.32 mm

UAV tasks
Dwell 5 s
Number of images 1

* Values used in the experimental field. 

Figure 3. Screen shot of the Waypoint Editor module showing the flight planning. 

4.4.2. UAV flight and image acquisition 

The preliminary steps before starting the flight were to upload the flight route to the UAV 

computer system, attach the camera to the vehicle and check the connectivity and the proper 

functioning of the whole system. After these steps, the pilot manually launches the UAV with the 

radio control transmitter and next activates the automatic flight route, making the vehicle go to the 

first waypoint and then fly along the flight lines until the entire study area is completely covered. 

Once all the images are taken, the pilot manually lands the UAV, and the ground station operator 
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prepares the vehicle for the next route. During the flight, the ground station operator watches the 

UAV telemetry data using the downlink decoder, another component of the MDC software (Figure 4). 

This program gives information about: 1) operating time of the UAV, 2) current flight time, 3) 

distance from take-off point to the UAV, 4) quality of the remote control signal received by the UAV, 

5) downlink quality, 6) battery status, and 7) GPS accuracy.  

Figure 4. Screen shot of the Downlink Decoder module showing the information displayed during a programmed 

flight. 

In addition to this information, the downlink decoder supports several important dialog pages, 

as follows: 

 Flight and video. This page shows the video stream captured by the sensor attached to the 

UAV, making it easier to control the UAV when it is manually driven. Additional data 

displayed in this page are: 1) distance to the UAV, 2) flight altitude above the take-off 

position, 3) speed of the UAV, 4) artificial horizon, 5) compass, and 6) roll and tilt angles. 

 Technical. This page supplies information about: 1) UAV position (GPS latitude and longitude), 

2) UAV altitude (GPS altitude above sea level), 3) current navigation mode, 4) magnetometer 

status, 5) barometer status, 6) motor power, 7) momentary status of all the radio control 

channels, and 8) limit values of flight altitude, distance and speed. 

 Route. This page shows a tridimensional display of the flight path. 

 Waypoint. This section shows information about: 1) the flying route followed by the UAV, 2) 

the UAV GPS position, and 3) the waypoint command that is being executed at each 

moment. 

 Sensor-payload. This page displays a diagram with sensor data received from the payload. 
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 Recordings. Three diagrams are displayed in this section: 1) comprising motor power and 

battery voltage over time, 2) comprising flight attitude (roll, pitch and yaw angles) with GPS 

data, and 3) comprising velocity, distance, wind profile, flight altitude and radio-control link 

quality. 

4.4.3. Multispectral band alignment 

The images taken by the still camera (Olympus model) can be used directly after downloading 

to the computer, but those taken by the multispectral camera (mini-MCA-6 Tetracam model) require 

some pre-processing. This camera takes the images of each channel in raw format and stores them 

separately on six individual CF cards embedded in the camera. Therefore, an alignment process is 

needed to group the six images taken in each waypoint. The Tetracam PixelWrench 2 (PW2) software 

(Tetracam Inc., Chatsworth, CA, USA), supplied with the multispectral camera, was used to perform 

the alignment process. The PW2 software provides a band-to-band registration file that contains 

information about the translation, rotation and scaling between the master and slave channels. Two 

different options were tested: 1) basic configuration of the PW2 software, as applied by Laliberte et 

al. (Laliberte et al. 2011), and 2) advanced configuration of PW2, which includes the newest field of 

view (FOV) optical calculator, which calculates additional offsets to compensate the alignment for 

closer distances. The quality of the alignment process was evaluated with the help of the spectralon® 

panel data captured in the images at a 30 m altitude. Spatial profiles were taken across the reference 

panel for each method and compared with the non-aligned image. The spatial profiles consisted of 

graphics representing the spectral values for each band along a line 45 pixels long drawn in the multi-

band images using the ENVI image processing software (Research System Inc., Boulder, CO, USA).  

4.4.4. Spatial resolution and flight length as affected by flight altitude 

Three independent flight routes were programmed for each type of camera to cover the whole 

experimental field at 30, 60 and 100 m altitude above ground level. The effects of flight altitude and 

camera resolution with respect to pixel size, area coverage (number of images per hectare) and flight 

duration were studied, and their implications for weed discrimination in the early season were 

discussed.  

4.4.5. Spectral resolution as affected by flight altitude 

To perform weed mapping based on UAV images, two consecutive phases are usually required 

(López-Granados 2011): 1) bare soil and vegetation discrimination, which would allow obtaining a
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two-classes image with vegetal cover (crop and weeds together) and bare soil, 2) crop and weeds

discrimination, in which the zones corresponding to crop are identified and masked, and finally, the 

detection and location of weeds are obtained. To determine the limitations of each sensor with 

regard to both phases, spectral values of the three covers present in the field (bare soil, crop and 

weeds) were extracted. These spectral values were collected in 15 randomly selected sampling areas 

for each soil use from the images taken during all the flight missions (i.e., both sensors at 30, 60 and 

100 m altitudes).

Three well-known vegetation indices (VIs) were derived from these values:  

 Normalised Difference Vegetation Index (NDVI, (Rouse et al. 1974))

NDVI = (NIR-R)/(NIR+R)     (1) 

 Normalised Green-Red Difference Index (NGRDI, (Gitelson et al. 2002)), 

NGRDI = (G-R)/(G+R)     (2) 

 Excess Green Index (ExG, (Ribeiro et al. 2005; Woebbecke et al. 1995)). 

ExG = 2g - r - b      (3) 

The potential of the VIs for spectral discrimination was evaluated by performing a least 

significant difference (LSD) test at p ≤ 0.01 through a one-way analysis of variance (ANOVA), and 

applying the M-statistic (equation 4) presented by Kaufman and Remer (1994) in order to quantify 

the histogram´s separation of vegetation indices. JMP software (SAS, Cary, NC, USA) was employed to 

perform the statistical analysis. 

M = (MEANclass1 – MEANclass2) / (σclass1 – σclass2) (4) 

M expresses the difference in the means of the class 1 and class 2 histograms normalized by 

the sum of their standard deviations (σ). Following the research strategy and steps mentioned 

before, class 1 and class 2 were either, vegetation and bare soil, where vegetation was weeds and 

crop studied together, or weeds and crop. M values are indicative of the separability or 

discriminatory power of classes 1 and 2 considered in every step. Two classes exhibit moderate 

separability when M exceeds 1, showing easier separation for larger M values which will provide a 

reasonable discrimination (Smith et al. 2007). According to Kaufman and Remer (1994), the same 

difference in means can give different measures of separability depending on the spread of the 

histograms. Wider histograms (larger σ) will cause more overlap and less separability than narrow 

histograms (smaller σ) for the same difference in means. 
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5. RESULTS AND DISCUSSION 

5.1. Image pre-processing 

5.1.1. Band alignment of multispectral imagery 

The images acquired by both cameras were downloaded to a computer by inserting their 

memory cards into a card reader and copying the data. An alignment process was performed on the 

multispectral images to match the six bands into a single readable file. The alignment results were 

examined visually and evaluated using spatial profiles (Figure 5).  

Figure 5. Images captured by the multispectral camera and spatial profiles depicting comparison of band-to-

band alignment. a) No alignment, b) Alignment by using the basic configuration of the PW2 software, and c) 

Alignment by using the PW2 software plus the field of view (FOV) optical calculator. 

The displacement among the curves for each channel in the spatial profiles makes evident the 

band misalignment of the original non-aligned images. The non-aligned images showed halos around 

the reference objects (Spectralon and vegetation) and noise in the soil background (Figure 5A). These 

halos and noise were still recognisable in the image aligned using the basic configuration of the PW2 

software (Figure 5B), although they were lesser than in the non-aligned image. These results are 

similar to those obtained by Laliberte et al. (2011), who reported poor alignment results using PW2 

software with the mini-MCA imagery. To solve this problem, they developed the local weighted 
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mean transform (LMWT) method and obtained a satisfactory alignment. However, the latest version 

of the PW2 software, launched in 2012, which includes the FOV optical calculator, performed a good 

alignment and allowed elimination of the halos and a high reduction of the background noise (Figure 

5C). In fact, these results seem to be quite similar to those achieved using the LMWT method. A good 

alignment of all the individual bands is crucial for subsequent image analysis, especially when 

spectral values of different objects of the image are extracted. The vegetation objects present in a 

weed-crop scenario in the early season are very small, as a consequence a poor alignment might 

include pixels not belonging to the objects of interest, drastically reducing the success of the image 

analysis and classification.  

Next to the alignment process, the PW2 software generated a unique multi-band image file 

that is incompatible with the mosaicking software. Therefore, the last step was to convert this multi-

band file to a TIFF-readable format using the ENVI software. 

5.1.2. Image orthorectification and mosaicking 

A sequence of images was collected in each flight mission to cover the whole experimental 

crop-field. An important task prior to image analysis was the combination of all these individual and 

overlapped images by applying two consecutive processes of orthorectification and mosaicking. The 

Agisoft Photoscan Professional Edition (Agisoft LLC, St. Petersburg, Russia) software was employed in 

this task. In the first step, the software asks for the geographical position and principal axes (roll, 

pitch and yaw) of the vehicle in each acquired image. Next, the software automatically aligns the 

photos. Finally, some ATT’s coordinates are added to assign geographical coordinates to the image. 

Then, the software automatically performs the orthorectification and mosaicking of the imagery set 

into a single image of the whole experimental field (Figure 6). The resultant ortho-mosaic shows a 

high-quality landscape metric and accurate crop row matching between consecutive images, which 

guarantees good performance of the subsequent image classification. 
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Figure 6. Ortho-mosaic of the whole experimental field. Composed from six individual images taken by the still 

RGB camera at 100 meters altitude. 

5.2. Effect of flight altitude on image spatial resolution and flight time 

The image spatial resolution and the area covered by each image as affected by the UAV flight 

altitude and the type of camera are shown in Figure 7. The imagery pixel size was directly 

proportional to the flight altitude. The still RGB camera captured images with pixel sizes of 1.14 cm 

and 3.81 cm, while the multispectral camera captured images with pixel sizes of 1.63 cm and 5.42 cm 

at flight altitudes of 30 and 100 m, respectively (Figure 8). At these altitudes, the area covered by 

each image of the still RGB camera increased from 0.16 ha (46 × 35 m) to 1.76 ha (153 × 115 m) and 

of the multispectral camera from 0.04 (21 × 17 m) to 0.38 ha (69 × 55 m), respectively. The 

differences between both types of images were due to the cameras’ technical specifications (Table 

2). The camera focal length affects both the pixel size and the area covered by each image, while the 

camera sensor size only influences the imagery pixel size.  
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Figure 7. Image spatial resolution and coverage as affected by flight altitude and type of camera. 

A crucial feature of the remote images for weed mapping in the early season is their high 

spatial resolution, which can be achieved with low-altitude flights. Of great importance is defining 

the optimum pixel size needed according to each specific objective, which is calculated from the size 

of the weed seedlings to be discriminated, the distance between crop rows and the crop type. In 

general, at least four pixels are required to detect the smallest objects within an image (Hengl 2006). 

Accordingly, if the objective is the discrimination of individual weed plants, the pixel size should be 

approximately 1-4 cm, which corresponds to flight altitudes of 27 to 105 m in the case of the still RGB 

camera and from 19 to 74 m in the case of the multispectral camera. However, when weed patch 

detection is aimed, the remote images could have a pixel size of 5 cm or even greater, which 

corresponds to a flight altitude higher than 100 m in both cameras. 
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Figure 8. UAV images collected by the two cameras.  Still RGB camera (a, b) and  multispectral camera (c, d) at 

30 m (a, c) and 100 m (b, d) flight altitude. 

The UAV acquired imagery with 60% forward lap and 30% side lap. From this overlapping and 

the camera sensor size, the WPE module calculated the number of images needed to capture the 

whole experimental field and, consequently, the time taken by the UAV to collect them at each flight 

altitude (Figure 9). The number of images per ha and the flight length were greater when using the 

multispectral camera, decreasing from 117 images ha-1 and 27 min at a 30 m altitude to 12 images 

ha-1 and 6 min at a 100 m altitude. For the still RGB camera, these variables ranged from 42 images 

ha-1 and 12 min at 30 m altitude to 6 images ha-1 5 min at 100 m. A very large number of images can 

limit the mosaicking process because the number of images per hectare strongly increased at very 

low altitudes following an asymptotic curve. In addition, the operation timing is limited by the UAV 

battery duration. All these variables have strong implications in the configuration of the optimum 

flight mission for weed mapping in the early season, which involves two main conditions: 1) to 

provide remote images with a fine spatial resolution to guarantee weed discrimination, and 2) to 

minimise the operating time and the number of images to reduce the limitation of flight duration and 

image mosaicking, respectively. 
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Figure 9. Flight length and number of images per ha as affected by flight altitude and  camera. 

5.3. Effect of flight altitude on image spectral resolution 

Spectral information captured by each camera at three flight altitudes was studied to 

determine significant differences at the pixel level between class 1 and class 2 in the two phases 

previously mentioned, i.e. between vegetation cover and bare soil, and between weeds and crop. 

The range and average spectral pixel values of the VIs, and M-statistics are shown in Table 3. 

First of all, it was crucial to explore the spectral differences between vegetation and bare soil 

to identify the potential to perform the first step of our research scheme, such an approach should 

point out the significant variations in spectral data of both classes, indicating which set of VIs, 

cameras and altitudes were able for their discrimination. All the indices showed significant 

differences between vegetation and soil and, in most cases, M-statistics performed reasonably well

exceeding 2, being NDVI the index that achieved the highest spectral separability at the three flight 

altitudes. This is due to NDVI emphasises the spectral response of the NIR band which characterises 

vegetation vigour and it is less sensitive to soil background effects than the other two indices. The 

magnitude of M-statistic, usually higher than 2.5 (excepting for ExG at 30 m and 60 altitudes and 
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multispectral camera), offer satisfactory results for a high robustness of vegetation discrimination in 

all the scenarios.  Kaufman and Remer (1994) reported M values ranging from 1.5 to 0.5 for mapping 

dense vegetation in forests, whereas Smith et al. (2007) obtained M values between 0.24 and 2.18 

for mapping burned areas.  According to our findings, the M achieved a much higher value (M = 8.9 

for multispectral camera and NDVI index) suggesting robust separability of classes. NDVI could be the 

best index to perform the first phase of the proposed classification strategy, although NGRDI and ExG 

also showed an overall good capacity for distinguishing vegetal cover, which would be very relevant 

due to RGB camera is much cheaper and easier to use than the multispectral camera.  

In order to perform the second proposed phase, it is necessary to test if weeds and crop can 

be discriminated using either RGB camera or the multispectral sensor. As a general statement, the 

multispectral camera showed much higher capacity to discriminate crop and weeds than the RGB 

camera. The better performance of the multispectral camera may be caused by its narrow sensor 

bandwidth. This camera uses filters with a 10 nm bandwidth, which reduces the interferences caused 

by other wavelengths, while the RGB camera acquires information in three wider spectral wavebands 

from the entire visible spectrum. Thus, means of NGRDI and ExG were not significantly different for 

crop and weeds at any flight altitude and M-statistic values were the lowest ones, excepting for ExG 

at 30 m altitude where M = 1.61. However, even at this altitude, M-statistic value is quite lower than 

the obtained for ExG and the multispectral camera (M = 3.02). A preliminary conclusion could be that 

the RGB camera is able to discriminate weeds and crop using images from ExG at 30 m altitude. 

However, one of the key question to elucidate at this point is to determine if M = 1.61 provides 

enough robustness for mapping weeds and crop. That doubt could be clarified going to Figure 10 

which shows the significant spectral differences among soil, weeds and crop in all the scenarios. Note 

that spectral differences among soil, and weeds and crop at 30 m altitude for ExG and RGB camera 

are clearly significant; however, the range of the standard deviation (see points in Fig. 10) of weeds 

and crop causes an overlapping which could produce a deficient discrimination between weeds and 

crop. Therefore, Table 3 offers an overall overview of separation between vegetation and soil, and 

weeds and crop; however these results must be deeply studied observing the ranges of minimum 

and maximum spectral values of every VI (Table 3) and ranges of standard deviation (Figure 10).  
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Figure 10. Vegetation index values of each class of soil cover (bare soil, weed and crop). The index values are 

affected by flight altitude and type of camera. Within a group, box-plots followed by the same letter do not 

differ significantly according to LSD test at P ≤ 0.01.

In the multispectral camera, NGRDI and ExG were significantly different for weeds and crop in 

all the flight altitudes tested. However, despite these significant differences observed and as stated 

before, the M-statistic and Figure 10 must be taken into account since both help to quantify the risk 

of misclassification due to the overlapping between value ranges of the vegetation indices studied. 

For instance, at 60 m altitude, NGRDI showed a significant spectral difference for weeds and crop; 

however M-statistic was lower than 1 (M = 0.81). This indicates that, apart from a significant spectral 

difference, a poor separation is expected between pixels from weeds and crop. This can be clearly 

appreciated in Figure 10 where the range of the standard deviation between weeds and crop 

involves an overlapping of values and this is the reason for which having a significant spectral 

discrimination this is not sufficient to achieve a satisfactory separability (M higher than 1).  

The case of ExG is different since this vegetation index showed significant spectral differences 

and M values higher than 1 at any flight altitude, although M was only slightly superior than 1 (M = 

1.19) at 60 m altitude. This points out that a good separation would be expected at 30 m and 

probably at 100 m; however, have the significant spectral differences and M = 1.19 obtained in Table 
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3 sufficient discriminatory power to properly separate crop and weeds at 60 m altitude. Figure 10 

again shows that this magnitude of M probably is not as much as required to successfully reach this 

objective due to the apparent overlapping of box-plots of weeds and crop and, consequently, a much 

more difficult separation would be expected at 60 m altitude. The only index studied using the NIR 

band was NDVI and it was not able to discriminate between crop and weeds at any flight altitude; in 

fact, NDVI showed the lowest M-statistic values among the indices calculated from the multispectral 

camera. 

As mentioned in the previous section and according to the objective of minimising the 

operating time and the number of images taken to reduce the limitation of UAV flight duration and 

image mosaicking, the optimum flight mission may be to capture images at the highest altitude 

possible. However, the highest spectral differences and M values of pixels were obtained at the 

lowest altitudes, i.e., pixel-based methods may be unsuccessful in weeds and crop discrimination in 

seedling stages at altitudes higher than 30 m due to the spectral similarity among these vegetation 

classes. Currently, spectral limitations may be solved by implementing advanced algorithms such as 

the object-based image analysis (OBIA) methodology (Laliberte and Rango 2009). The OBIA 

methodology identifies spatially and spectrally homogenous units named objects created by grouping 

adjacent pixels according to a procedure known as segmentation. Afterwards, multiple features of 

localisation, texture, proximity and hierarchical relationships are used that drastically increase the 

success of image classification (Blaschke 2010; Peña-Barragán et al. 2011). In crop fields at an early 

stage, the relative position of the plants in the crop rows, rather than their spectral information, may 

be the key feature to distinguishing them. Consequently, every plant that is not located in the crop 

row can be assumed to be a weed. Therefore, according our results a strategy for a robust 

classification of UAV images could be developed involving two steps: 1) discriminating vegetation 

(weeds and crop) from bare soil by using spectral information, and 2) discriminating weeds from 

crop-rows using the OBIA methodology. Therefore, future investigations will be essential to 

determine the potential of OBIA techniques to distinguish and map weeds and crop using UAV 

imagery at higher flight altitudes and taken when weeds and crop are at the early phenological 

stages. Our recent research using OBIA methodology has shown the improvement of using satellite 

imagery for mapping crops (Castillejo-González et al. 2009; Peña-Barragán et al. 2011) or weeds at 

late phenological stages in winter wheat (de Castro et al. 2013). Our hypothesis for further work is 

based on the idea that the OBIA methodology has confirmed to be a powerful and flexible algorithm 

adaptable in a number of agricultural situations. The main aim would be to discriminate and map 

early weeds to enhance the decision making process for developing in-season ESSWM at high 
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altitudes using RGB and ExG index compared to multispectral camera and the pixel-based image 

analysis.  This would allow reducing the number of UAV imagery to improve the performance of the 

UAV (flight length and efficiency of energy supply) and the mosaicking process.  This approach could 

be a more profitable method for mapping early weed infestations due to both, the covering of larger 

crop surface area and RGB cameras are cheaper and economically more affordable than 

multispectral cameras. Considering that the UAV development is a substantial investment, the 

possibility of using RGB cameras would reduce significantly the additional costs.

6. CONCLUSIONS 

Weeds are distributed in patches within crops and this spatial structure allows mapping 

infested-uninfested areas and herbicide treatments can be developed according to weed presence. 

The main objectives of this research were to deploy an UAV equipped with either, RBG or 

multispectral cameras, and to analyze the technical specifications and configuration of the UAV to 

generate images at different altitudes with the high spectral resolution required for the detection 

and location of weed seedlings in a sunflower field for further applications of ESSWM. Due to its 

flexibility and low flight altitude, the UAV showed ability to take ultra-high spatial resolution imagery 

and to operate on demand according to the flight mission planned.  

The image spatial resolution, the area covered by each image and the flight timing varied 

according to the camera specifications and the flight altitude. The proper spatial resolution was 

defined according to each specific objective. A pixel lower than 4 cm was recommended to 

discriminate individual weed plants, which corresponded to flight altitudes below 100 m. If the 

objective was weed patch detection, the UAV can fly to a higher altitude to obtain remote images 

with pixels of 5 cm or greater. However, the number of images needed to cover the whole field could 

limit the flight mission at a lower altitude due to the increased flight length, problems with the 

energy supply, and the computational capacity of the mosaicking software.  

Spectral differences between weeds, crop and bare soil were significant for NGRDI and ExG 

indices, mainly at a 30 m altitude. At higher altitudes, many weed and crop pixels had similar spectral 

values, which may increase discrimination errors. Greater spectral separability was obtained 

between vegetation and bare soil with the index NDVI, suggesting the employment of multispectral 

images for a more robust discrimination. In this case, the strategy for improving the image 

mosaicking and classification could be to implement the OBIA methodology to include features of 

localisation and proximity between weed and crop plants. An agreement among spectral and spatial 
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resolutions is needed to optimise the flight mission according to the size of the smaller objects to be 

discriminated (weed plants or weed patches). 

The information and results herein presented can help in the selection of an adequate sensor 

and to configure the flight mission for ESSWM in sunflower crops and other similar crop row 

scenarios (e.g., corn, sugar beet, tomato). Despite the initial complexity of management of the UAV 

and its components and software, and after a period of training the pilots and operators, the 

described workflow can be applied recursively. 
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CAPÍTULO 2 

MULTI-TEMPORAL MAPPING OF THE 

VEGETATION FRACTION IN EARLY-SEASON 

WHEAT FIELDS USING IMAGES FROM UAV 
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1. RESUMEN 

Cartografiar la vegetación en campos de cultivo es un primer paso importante en las 

aplicaciones de la teledetección a la agricultura de precisión. Las plataformas aéreas tradicionales 

como aviones y satélites no son adecuadas para estas tareas en fase temprana debido a su baja 

resolución temporal y espacial. En este artículo, un vehículo aéreo no tripulado (UAV por sus siglas en 

inglés) equipado con una cámara convencional (que toma imágenes en el espectro visible) fue usado 

para tomar imágenes de muy alta resolución espacial sobre un campo de trigo en fase temprana. En 

estas imágenes, seis índices espectrales (CIVE, ExG, ExGR, índice de Woebbecke, NGRDI, VEG) y dos 

combinaciones de estos índices fueron calculados y evaluados para la cartografía de la fracción de 

vegetación. También se estudió la influencia en la precisión de la clasificación de la altura de vuelo 

(30 y 60 m) y de los días después de la siembra (DDS) del 35 al 75.  Los índices ExG y VEG 

consiguieron la mayor precisión en la cartografía de la fracción de vegetación, con valores desde 

87,73% a 91,99% a 30 m de altura de vuelo y del 83,74% al 87,82% a 60 m de altura. Estos índices 

fueron también espacial y temporalmente consistentes, permitiendo una cartografía precisa de la 

vegetación sobre todo el campo de trigo y en cualquier fecha. Esto proporciona evidencias de que los 

índices espectrales en el rango visible, calculados usando una cámara de bajo coste a bordo de un 

UAV volando a baja altura, son una herramienta apropiada para discriminar la vegetación en campos 

de trigo en fase temprana. Esto abre la puerta a la utilización de esta tecnología en aplicaciones de la 

agricultura de precisión  como el manejo localizado de malas hierbas en fase temprana, en el cual 

una precisa detección de la vegetación es esencial para clasificar cultivo y mala hierba. 

2. ABSTRACT 

Mapping vegetation in crop fields is an important step in remote sensing applications for 

precision agriculture. Traditional aerial platforms such as planes and satellites are not suitable for 

these applications due to their low spatial and temporal resolutions. In this article, a UAV equipped 

with a commercial camera (visible spectrum) was used for ultra-high resolution image acquisition 

over a wheat field in the early-season period. From these images, six visible spectral indices (CIVE, 

ExG, ExGR, Woebbecke Index, NGRDI, VEG) and two combinations of these indices were calculated 

and evaluated for vegetation fraction mapping, to study the influence of flight altitude (30 and 60 m) 

and days after sowing (DAS)  from 35 to 75 DAS on the classification accuracy. The ExG and VEG 

indices achieved the best accuracy in the vegetation fraction mapping, with values ranging from 

87.73% to 91.99% at a 30 m flight altitude and from 83.74% to 87.82% at a 60 m flight altitude. These 

indices were also spatially and temporally consistent, allowing accurate vegetation mapping over the 

entire wheat field at any date. This provides evidence that visible spectral indices derived from 
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images acquired using a low-cost camera onboard a UAV flying at low altitudes are a suitable tool to 

use to discriminate vegetation in wheat fields in the early season. This opens the doors for the 

utilisation of this technology in precision agriculture applications such as early site specific weed 

management in which accurate vegetation fraction mapping is essential for crop-weed classification. 

3. INTRODUCTION 

The mapping of the percentage of green vegetation per unit of ground surface, i.e., the 

vegetation fraction (VF), is a major issue in remote sensing. Monitoring the temporal and spatial 

variations in the VF in a specific area has many ecological and agricultural applications, such as the 

identification of land degradation and desertification (Xiao and Moody 2005), the estimation of the 

phenological and physiological status of vegetation (Yu et al. 2013) and the prediction of crop yields 

(Yang et al. 2006), among others. In precision agriculture (PA), quantifying the distribution of VF 

within a crop-field is a first and crucial step prior to addressing further objectives. One of these 

objectives is the detection and mapping of weeds in crop fields, with the ultimate goal of applying 

site-specific weed management (SSWM) techniques and controlling weed patches according to their 

coverage at each point of the crop-field. In this context, remote imagery for mapping weeds has been 

traditionally provided by piloted airborne (de Castro et al. 2012; Peña-Barragán et al. 2011) or 

satellite platforms (de Castro et al. 2013; Martín et al. 2011). However, these platforms are limited in 

their ability to provide images with adequate spatial resolution for differentiating crop and weed 

vegetation in early development stages for early site specific weed management ESSWM) (López-

Granados 2011). In most crop-weed scenarios and for post-emergence herbicide application, the 

optimal date for weed control is when the crop and weeds are in their seedling growth stages (García 

Torres and Fernández Quintanilla 1991), and consequently images at very high spatial resolution 

(often on the order of mm or very few cm) are needed (Hengl 2006).

Limitations associated with traditional aerial imagery platforms can be overcome by using 

Unmanned Aerial Vehicles (UAV), which have been developed in recent years into a new aerial 

platform for image acquisition with a tremendous potential for mapping vegetation cover for 

detailed vegetation studies with environmental (Bryson et al. 2010; Laliberte and Rango 2006) and 

agricultural objectives (Garcia-Ruiz et al. 2013; Herwitz et al. 2004). UAVs can fly at low altitudes, 

allowing them to take ultra-high spatial resolution images (e.g., pixels of a few mm or cm) and to 

observe small individual plants and patches, which has not previously been possible (Xiang and Tian 

2011). Moreover, UAVs can supply images even on cloudy days, and the time needed to prepare and 

initiate the flight is reduced, which allows greater flexibility in scheduling the imagery acquisition. 

Other advantages of UAVs are their lower cost and their great flexibility of configuration compared 
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with piloted aircraft, which allows the utilisation and testing of low-cost sensors such as conventional 

digital cameras. For example, there is widespread agreement among researchers that commercial 

cameras have been a powerful tool for assessing green vegetation cover using on-ground imagery 

taken with terrestrial platforms (Guijarro et al. 2011; Meyer and Neto 2008; Romeo et al. 2013) and 

masts (Motohka et al. 2010; Sakamoto et al. 2011; Yu et al. 2013). Together with their low cost, 

another advantage of conventional digital cameras is their high resolution, which is needed when 

working in narrow row crops such as wheat. However, to the best of our knowledge, they have not 

been used for VF assessment in images collected with an UAV for agricultural proposes. 

Image analysis techniques for quantifying vegetation cover are generally based on the use of 

vegetation indices (VIs) (Xiao and Moody 2005), which are the product of arithmetic operations 

performed with spectral information from the radiation reflected by the vegetation at different 

wavelengths. Information derived from VIs is usually less sensitive to illumination and other factors 

affecting reflectance (Gitelson et al. 2002). The underlying mechanisms of VIs are well understood, 

and they emphasise some features of vegetation cover and facilitate obtaining relevant information 

from digital imagery (Delegido et al. 2013). In images at ultra-high spatial resolution, it is necessary to 

determine the VI that enhances the differences among pixels containing vegetation and pixels 

containing non-vegetation, as well as the threshold value that sets the breakpoint between both 

classes. The classification output is necessary for the thresholding operation, which needs to be 

optimised for a successful result. There are several automatic methods for threshold calculation, 

among which Otsu’s (Otsu 1979) method is one of the most utilised for agronomical issues (Guijarro 

et al. 2011; Meyer and Neto 2008). It assumes that the image contains two classes of pixels (bare soil 

and vegetation when considering crop scenarios) and then calculates the optimum threshold based 

on minimising combined spread (intra-class variance).

To date, VF has been estimated by relating it to VI values in image pixels from airborne and 

satellite platforms, in which the pixels include vegetated and non-vegetated zones due to the large 

size (from a few square metres to square kilometres) (Barati et al. 2011; Gitelson et al. 2002). Today, 

the ultra-high resolution of UAV imagery allows images in which almost every pixel covers only 

vegetation or bare soil, with a low proportion of pixels representing a mixed coverage. Therefore, VF 

can be calculated as the percentage of pixels classified as vegetation per unit of ground surface. This 

is particularly relevant when working with crops such as cereals which are sown in narrow crop rows 

because the surface distance between such rows is usually not wider than 15-17 cm.

In addition to adequate thresholding and good spatial and temporal resolution, another 

important issue in VF mapping is accurate spatial and temporal consistency. Spatial stability is 

needed to assure that VF mapping is accurate in the whole studied area because a VI that works 
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appropriately in only a few zones is useless. Temporal stability is recommendable because it makes it 

possible to obtain VF maps whenever they are needed. Both parameters make possible the 

construction of VF maps without any quality loss in the most adequate moment according to the 

objective. 

Although previously reported methods have been mostly applied to on-ground images, they 

could also be suitable for the remote images captured with UAVs, mainly due to the spatial 

resolution of on-ground and UAV images being on the same order of magnitude. Investigations about 

detailed evaluation of remote images captured with UAV platforms and their spectral information or 

derived vegetation indices with the objective of quantifying VF are currently scarce, although 

recently Peña et al. (2013) developed a method for weed mapping in early-season maize fields using 

UAV images. 

As part of an overall research program to investigate the opportunities and limitations of UAV 

imagery in accurately mapping weeds in early season winter wheat, it is crucial to explore the 

potential of generating VF maps from multiple overlapped frames that were mosaicked as a first step 

in the proper discrimination of crop rows and weeds. Such an approach should demonstrate the 

ability to accurately discriminate weeds grown between crop rows to design a field program of 

ESSWM. Consequently, this work evaluated the accuracy, spatial and temporal consistency and 

sensitivity of different vegetation indices for a wheat crop that were extracted from visible images 

acquired with a low-cost camera installed in an UAV flying. We focused on several acquisition dates 

(temporal analysis) and two different flight altitudes. Additionally, to the best of our knowledge, this 

is the first work to evaluate the adequate performance of Otsu’s thresholding method for VF 

mapping in UAV imagery. 

4. MATERIALS AND METHODS 

4.1. Study site  

The study was performed in a wheat field with flat ground (average slope <1%) situated at the 

public farm Alameda del Obispo, in Córdoba (southern Spain, coordinates 37,856N, 4,806W, datum 

WGS84). The wheat crop was sown on November 22th 2012 at 6 kg ha-1 in rows 0.15 m apart, and 

emergence of the wheat plants started by 15 days after sowing (DAS). The field had an area of about 

0.5 ha, and was naturally infested by ryegrass (Lolium rigidum), which is a monocotyledoneus weed 

with an appearance very similar to wheat and an analogous phenological evolution. Weed and crop 

plants were in the principal stage 1 (leaf development) from the BBCH extended scale (Meier et al. 

1997) in the beginning of the experiment, whereas plants were at the principal stage 2 (tillering) in 

the last days of the study. 
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4.2. UAV flights and remote images 

A quadrocopter platform with vertical take-off and landing (VTOL), model md4-1000 

(microdrones GmbH, Siegen, Germany), was used to collect a set of aerial images at two flight 

altitudes over the experimental crop-field. This UAV (Figure 1) is equipped with four brushless 

motors powered by a battery and can fly by remote control or autonomously with the aid of its 

Global Position System (GPS) receiver and its waypoint navigation system. The VTOL system makes 

the UAV independent of a runway, so it can be used in a wide range of different situations. The 

sensor mounted on the UAV to acquire the imagery was a still point-and-shoot camera, model 

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan). The camera acquires 12-megapixel 

images in true colour (Red, R; Green, G; and Blue, B, bands) with 8-bit radiometric resolution and is 

equipped with a 14-42 mm zoom lens. The camera’s sensor is 4,032 × 3,024 pixels, and the images 

are stored in a secure digital SD-card. The camera was set to operate in the automatic mode, which 

adjusts the exposure time (shutter speed) and F-stop (aperture) optimally. Image triggering is 

activated by the UAV according to the programmed flight route. At the moment of each shoot, the 

on-board computer system records a timestamp, the GPS location, the flight altitude, and vehicle 

principal axes (pitch, roll and heading). Detailed information about the configuration of the UAV 

flights and specification of the vehicle and the camera used can be found in (Torres-Sánchez et al. 

2013). 

Figure 1. Microdrone MD4-1000 flying over the experimental crop. 
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The first set of aerial images was collected at 35 DAS, and then sets were collected at 7-10 day 

intervals; the last set was collected at 75 DAS. Therefore, images were obtained at different growth 

stages. On every date, two flights were performed at different altitudes: 30 m and 60 m. These flight 

altitudes resulted in spatial resolutions of 1.14 and 2.28 cm, respectively. The flight routes were 

programmed into the UAV software so that the vehicle stopped 5 s at every image acquisition point 

to ensure that the camera took a good light measurement. With this configuration, the flights at 30 

m and 60 m altitude took 10 and 5 minutes, respectively; and the UAV acquired 36 and 10 images at 

30 and 60 m flight altitude, respectively.   

In the course of the UAV flights, a barium sulphate standard Spectralon® panel (Labsphere Inc., 

North Sutton, NH, USA) of 1×1 m was also placed in the middle of the field (Figure 2) to calibrate the 

spectral data. Digital images captured by each camera channel were spectrally corrected by applying 

an empirical linear relationship (Hunt, Jr. et al. 2010). Equation coefficients were derived by fitting 

digital numbers of the images located in the Spectralon panel to the Spectralon ground values.

Figure 2. Spectralon and frames in the wheat field. 

4.3. Image mosaicking 

A sequence of overlapped images was collected in each flight mission to cover the whole 

experimental crop-field. An important task prior to image analysis was the combination of all these 

individual and overlapped images by applying a process of mosaicking. The imagery had a 30% side-
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lap and a 60% forward-lap to allow correct image mosaicking to generate a complete crop map in the 

whole study area. Agisoft PhotoScan Professional Edition (Agisoft LLC, St. Petersburg, Russia) was 

employed in this task. The mosaicking process had three principal steps. The first one was the image 

alignment, i.e., the software searches for common points in the images and matches them, as well as 

finding the position of the camera for each image and refining camera calibration parameters. The 

next step was to build the image geometry. Based on the estimated camera positions and images 

themselves a 3D polygon mesh, representing the overflown area, was built by PhotoScan software. 

Once the geometry was constructed, the individual images were projected over it for orthophoto 

generation. The resultant ortho-mosaicked image must be geometrically interoperable and must 

shows an accurate crop row matching between both sides of overlapped borderline images, both of 

which guarantee good performance of the subsequent image analysis.

4.4. Quantification of vegetation fraction 

Six VIs and two VI combinations, based on RGB space, were tested for classifying green 

vegetation pixels in the mosaicked images and quantifying vegetation fraction.  

- Normalized Green-Red Difference Index (Gitelson et al. 2002)

 (1) 

- Excess Green (Woebbecke et al. 1995)

 (2) 

- Color index of vegetation (Kataoka et al. 2003)

 (3) 

- Vegetativen (Hague et al. 2006) 

 with a = 0.667 as in its reference (4) 

- Excess Green minus Excess Red (Camargo Neto 2004) 

(5)

- Woebbecke Index (Woebbecke et al. 1995) 

(6)



Capítulo 2 

78  Tesis doctoral 

- Combination (Guijarro et al. 2011) 

 (7) 

- Combination 2 (Guerrero et al. 2012) 

 (8) 

The next normalization scheme was applied in some VIs: 

 (9) 

These VIs were designed to accentuate the green component of the images, and VEG was also 

designed to cope with the variability of natural daylight illumination. The applications of the VIs were 

able to transform the images from the original RGB three-band space to a greyscale band. All the 

mosaicked images from the different dates and flight altitudes were transformed to greyscale images 

by the application of the above mentioned VIs. In the greyscale images generated by the VIs, pixels 

corresponding to vegetation zones in the field show intensity levels greater than the rest of the 

image pixels.  

To perform image classification, the value of each greyscale image pixel was compared with a 

prefixed threshold; if the pixel value was higher than the threshold, then it was classified as 

vegetation. Once the image pixels were classified, the VF was determined as the percentage of pixels 

classified as vegetation per unit of ground surface: 

 (10)

The VF was calculated for 96 square frames of three different areas (16, 4 and 1 m2) 

distributed regularly throughout the studied surface (Figure 2). The VF values for every frame were 

calculated using different thresholds (Table 1) in the greyscale images coming from the application of 

the studied VIs to all the mosaicked images from every date and flight altitude. The threshold ranges 

for every index were established to cover the lowest and highest VF values in the whole image. Once 

the threshold range was established for every VI, it was automatically divided to obtain 10 

equidistant values within this range. Then, every one of these 10 values was tested in the 

determination of VF for 30 and 60 m flight altitude at any flight date. 
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Table 1. Thresholds tested to determine the VF for 30 and 60 m flight altitude at any flight date according to the 

lowest and highest VF values in the mosaicked. 

Vegetation indices Thresholds

NGRDI -0.08 -0.06 -0.05 -0.03 -0.01 00.01 00.03 00.05 00.06 00.08

ExG 0.03 0.05 0.08 0.11 0.14 0.16 0.19 0.22 0.25 0.27

CIVE 18.62 18.64 18.65 18.67 18.69 18.71 18.73 18.75 18.76 18.78

VEG 0.90 0.94 0.99 1.03 1.08 1.12 1.17 1.21 1.26 1.30

ExGR -0.92 -0.90 -0.87 -0.84 -0.81 -0.79 -0.76 -0.73 -0.70 -0.68

COM 6.02 6.04 6.07 6.09 6.11 6.13 6.16 6.18 6.20 6.22

COM2 8.98 9.00 9.02 9.04 9.05 9.07 9.09 9.11 9.12 9.14

WI -6.11 -4.38 -2.64 -0.90 0.83 2.57 4.30 6.04 7.78 9.51

4.5. Evaluation of VF mapping 

For validation purposes, a flight at 10 m altitude was used to collect vertical pictures of the 

sampling frames. The UAV was programmed to fly continuously taking images every second to obtain 

several images for every frame, which allowed the choosing of the best one. The high proximity of 

these images to the frames made it possible to visualise individual plants. Therefore, the best image 

of every frame was used to extract the observed VF (OVF) data in every sampling point. The accuracy 

of the VF estimations was evaluated by comparing them with the observed VF values. The observed 

VF data were determined by using the index and threshold that better detected individual plants 

according to a visual interpretation (Figure 3). The following expression was calculated to evaluate 

the performance of the different indices and thresholds: 

 (11) 

Figure 3. Ten metre altitude frame image and the output of the image after the vegetation classification 

process. 
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The application of equation (11) resulted in a high accuracy values. The following statistics 

from these values were calculated to study the VIs: 

- Mean accuracy: calculated for every index as affected by the threshold, flight date, and 

altitude. It was used to determine the best threshold for every VI for a specific date and flight 

altitude. Once this threshold was selected, VIs could be compared based on their best 

operational conditions. 

- Standard deviation (SD) of accuracy: calculated for the accuracy values achieved with the 

best threshold for every index as affected by the flight date and altitude. Every accuracy 

value was related with a specific frame, so it had coordinates on the field; therefore, the SD 

measurement of the dispersion from the mean had a spatial meaning in this study. High SD 

values indicated that the VI accuracy was not stable over the field, with areas in which the VF 

yielded good estimates and others in which it did not. 

- Coefficient of variation (CV): calculated for the best mean accuracies of every VI along the six 

studied flight dates. It allowed the analysis of how the accuracy of a VI at a flight altitude 

varied over the time to select the VIs that achieved better classification results without being 

influenced by the flight date. 

After the two best VIs were selected, their accuracy values for the best threshold at every date 

and flight altitude were distributed in a map using the coordinates of the frames from which they 

were calculated. Then, using the values at these points, density maps were generated to spatially 

represent the accuracy of the two VIs at every date and flight altitude. The observed and estimated 

VFs was also compared for these two VIs using a 1:1 line, which should have a correspondence of 1 in 

an ideal situation. 

The study of the different thresholds and the accuracies achieved with their application to the 

images allowed the selection of the best VI. Additionally, to evaluate the feasibility of automatic 

thresholding, Otsu’s method (Otsu 1979) was compared with the best VI from the best date of the 

experiment. This methodology was developed to be used on grey level histograms, so we tested it on 

the greyscale band generated by the application of the best VI in the RGB original image.  In every 

validation frame, Otsu´s method automatically applied an optimal threshold based on minimizing 

combined intra-class variance. The results of the VF estimation in both cases, i.e., the best VI 

threshold and Otsu´s thresholding, were compared to determine if this methodology was applicable 

to quantify VF using UAV imagery.

JMP software (SAS, Cary, NC, USA) was employed to perform the data analysis. eCognition 

Developer 8 (Trimble GeoSpatial, Munich, Germany) was used to automate the VF quantification for 
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all the thresholds, flight altitudes and dates. The Otsu’s thresholds were calculated using ImageJ 

1.46r (Wayne Rasband, National Institutes of Health, USA). 

5. RESULTS 

The mean accuracy and the standard deviation at any flight date and altitude was determined 

using all the VIs with their corresponding 10 thresholds showed in Table 1. The threshold obtaining 

best results for every VI together to its accuracy and standard deviation at any flight date and 

altitude are shown in Table 2. At 30 m flight altitude, ExG reached the highest accuracy in the whole 

experiment on a concrete date (91.99% at 35 DAS); it also had the best mean accuracy for more 

dates (at 35, 43 and 60 DAS), and it showed the highest mean of accuracy over time (90.20%). At the 

60 m flight altitude, Meyer achieved the highest mean accuracy for two dates (43 and 49 DAS), and 

VEG was also the best for two dates (68 and 75 DAS). The best mean accuracies over the time were 

reached by VEG (86.25%), closely followed by ExG (86.15%). 

5.1. Classification accuracy of VF as affected by VI and spatial factor 

Accuracy results were calculated for every georeferenced frame distributed on the field; 

therefore, the SD values were able to give spatial information about the consistency of VF mean 

classification accuracy across the experimental field. A low accuracy SD indicated a high spatial 

consistency of the VI for estimating VF. The lowest SD values were associated in several cases with 

the highest accuracy at each date and flight altitude, and in the other cases they were associated 

with the second or third highest accuracy. The ExG, WI and VEG indices showed the lowest SD at one 

specific date and flight altitude. The index with the best spatial consistency at 30 m and 60 m flight 

altitude was ExG (7.72 and 10.20, respectively), closely followed by VEG (7.75 and 10.22). 

5.2. Classification accuracy of VF as affected by VI and temporal factors 

The COM, COM2, ExG, ExGR, NGRDI and VEG indices showed similar accuracy values at all the 

studied dates; e.g., the ExG mean accuracy only fluctuated between 91.99% and 87.75%. Thus, 

temporal factors did not have a remarkable influence on the estimation of VF by these indices. 

However, the CIVE and Meyer accuracies were affected by time, with lower values on the last dates. 

The analysis of CV evolution over time was used to determine which VIs showed lower 

variability over time. This is an important factor to be studied because it is better to use VIs that 

perform accurate VF quantification regardless of the flight date. The ExG and VEG were the indices 

with the lowest CVs over the time at the 30 and 60 m flight altitudes, with values of approximately 

8.6% 11.8%, respectively.  
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5.3. Classification accuracy of VF as affected by VI and the flight altitude 

The mean accuracies at 30 m of CIVE, COM, COM2, ExG, ExGR, NGRDI and VEG were always 

higher than at the 60 m flight altitude. Only WI at 75 DAS reached a slightly better accuracy at the 60 

m altitude. WI also showed the same accuracy at both flight altitudes at 68 DAS. On average, the 

accuracy of VF quantification was 3.95% higher at the 30 m altitude. The VI with the greatest 

accuracy variations associated with flight altitude was NGRDI, whereas the VI that was least affected 

by this parameter was WI. 

5.4. Automatic thresholding by using Otsu´s method  

Otsu’s automatic thresholding methodology was applied to the ExG index for every one of the 

frames from the 30 m altitude flight at 35 DAS, which was the example in which the best accuracy 

was achieved. The application of this methodology led to obtaining one threshold by frame, with 

values ranging from 0.06 to 0.20 and a mean of 0.11. The use of its own threshold for VF 

quantification in every frame resulted in a mean accuracy of 91.19%, slightly lower than the one 

calculated using the best threshold from Table 1 (0.11) for ExG in all the frames (91.99%). The mean 

value of the VI in every frame which is an easy way to obtain a threshold (Burgos-Artizzu et al. 2011; 

Guijarro et al. 2011), was also tested for thresholding, however  it led to an over-estimation of the VF 

(data not shown). The SD achieved with Otsu’s method was 6.95, which indicated a spatial 

consistency similar to the one obtained using 0.11 as threshold in all the frames (6.50).

5.5. VF mapping from the best VIs 

Considering the mean accuracy along all the temporal series, its coefficient of variation, and 

their spatial consistency, the best VIs were ExG and VEG. Therefore, they were studied more 

exhaustively. Maps of accuracy by date at the 30 m (Figure 4) and 60 m flight altitudes (Figure 5) 

were built and compared to the maps of the observed VF. The observed VF was also graphically 

compared with the estimated VF from the 30 and 60 m flights. Prior to the comments on these 

figures, some details must be clarified as follows:  

1. The map size was not the same for all the dates because some images failed to be acquired 

at 10 m flight altitude, and consequently, there were some small areas in that were 

unfeasible to use to determine the observed VF.  

2. The observed VF was lower on the last date than in the previous one, and this lower 

vegetation density was even visually apparent in the images. According to the field crop data 

recorded by the authors on the different flight dates, this could be due to the wheat and 

weed plants being at the beginning of the tillering growth stage, in which the wheat stems 
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become more vertical and show fewer surfaces in the aerial images (C. Fernández-

Quintanilla, personal communication, May 16, 2013). 

Figure 4. Observed VF map. Accuracy maps for the best VIs, and graphics comparing the observed and 

estimated VFs at the 30 m flight altitude.
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Figure 5. Observed VF map. Accuracy maps for the best VIs, and graphics comparing the observed and 

estimated VFs at the 60 m flight altitude.

Accuracy maps were almost identical for both VIs at every flight date. The mapping of accuracy 

revealed that there was a high proportion of the wheat field in which the accuracy was over 90%, 

indicating the suitability of the studied VIs for VF quantification. This proportion was lower in imagery 

acquired at the 60 m flight altitude, as suggested by the lower accuracy values shown in Table 2. 
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Zones with lower accuracy were located at the same places at both 30 and 60 m, but they were 

bigger at the higher altitude. Zones with lower accuracy were not consistent over time. 

The graphical comparison of the observed and estimated VFs showed that most points were 

near the 1:1 line, which indicated a high correlation among them. On the first dates, the point cloud 

and the regression line did not cover the whole range of possible values because there were no 

frames with high VF values. At 68 DAS, as it was mentioned above, VF reached the highest values; 

therefore, there were no points in the graphic zone corresponding to lower VF values. The best fit 

between the regression line and the 1:1 line was reached at the three last dates at the 30 m flight 

altitude for ExG and VEG. At the 60 m flight altitude, the best fit was also reached at the three last 

dates for the two studied VIS. 

6. DISCUSSION 

The discrimination of vegetation in narrow crop row fields during the early growth stages, 

when the crop row width is 15 cm and the plant size is only of a few centimetres, requires the use of 

images with a ultra-high spatial resolution because at least four pixels are required to detect the 

smallest objects within an image (Hengl 2006). For this reason, distinguishing small seedlings has 

been commonly undertaken by analyzing images captured with cameras or sensors mounted in on-

ground platforms (Burgos-Artizzu et al. 2010; Romeo et al. 2013). However, the use of remote 

images captured with UAVs flying at low altitudes offer a new opportunity that needs to be 

investigated in detail. This article shows the visible vegetation indices that best performed green 

vegetation discrimination in a wheat field tested on six different dates throughout the earliest stages 

of crop development and compared the results obtained in remote images captured at two different 

flight altitudes. 

Although most VIs tested showed the ability to discriminate vegetation, two indices (ExG and 

VEG) had the highest classification accuracy independent of the image acquisition date. When 

mapping spatially variable features in precision agriculture, such as VF or vegetation vigour, good 

accuracy is needed. However, it is also required that this accuracy be homogenously distributed 

across the studied crop. Mapping these variables would be useless if the mapping accuracy differed 

from one zone to another. Therefore, the spatial consistency achieved for ExG and VEG makes them 

adequate for precision agriculture applications in which vegetation quantification is needed. Yu et al. 

(Yu et al. 2013) also reported that ExG was the VI with the best accuracy in their experiments in 

maize, closely followed by ExGR and VEG. The excellent fitting between the regression line and the 

1:1 line in figures 4 and 5 for the three last dates indicates that there is a low probability of under or 

over-estimation of the vegetation fraction. The worse fitting achieved on the first dates could be due 
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to the lack of points in the graphic region corresponding to high VF values, which causes the 

accumulation of points in the opposite region of the graphic, while on the three last dates, there 

were points distributed all over the graphic. 

From an agronomic point of view, temporal consistency evaluated by the CV of the accuracy is 

also of great importance because it allows overflying the crop just when the farmer wants to study 

the crop without loss in the accuracy of the VF quantification. For example, if the farmer’s objective 

is to detect vegetation as a step prior to designing an early site-specific weed treatment, the crop 

images can be acquired a few days before the weed treatment is going to be applied.  

Meyer and Neto (2008) reported that ExGR does not require a special threshold calculation in 

images acquired at 1 m above the ground. Their results showed that plant pixel values were all 

positive, and the remaining background pixels were all negative. However, for the UAV imagery 

studied in this work, different threshold values lower than zero (i.e., negative) were needed to 

classify vegetation pixels using ExGR. Those that involved a single threshold were not applicable in 

our work for every VI, but rather the different dates and flight altitudes analysed made it necessary 

to search for the best threshold in every case. Guijarro et al. (2011) and Burgos-Artizzu et al. (2011)

working with on-ground imagery in maize crops stated that Otsu’s thresholding method led to an 

under-estimation of vegetation in their image analysis. However, Otsu’s thresholding method 

achieved a satisfactory accuracy for the results in our work with remote imagery. Considering the 

fact that different thresholds were needed for each VI and flight date, Otsu’s method could be used 

to automate the threshold selection in future works where vegetation segmentation from UAV 

images is required.

Of relevant interest is the definition of the optimum pixel size needed according to the size of 

the plants to be discriminated. In remote sensing, the pixel size is directly proportional to the flight 

altitude. In our experiment, classification results were moderately affected by the flight altitude, with 

an average reduction of 3.95% in the classification results when flight altitudes increased from 30 m 

(1.14 cm/pixel) to 60 m (2.28 cm/pixel). When the spatial resolution is very high, the plants in the 

image are well delimited; however, when the spatial resolution is poorer, limits between plants and 

soil are fuzzy, and consequently, there is usually a higher proportion of pixels including information 

for both vegetation and bare soil. In our study, this mixed spectral information altered the VI values 

in those pixels affecting the accuracy of the VF detection. Excluding the pixels with mixed spectral 

information, the discrimination of pixels corresponding to bare soil or vegetation can be robustly 

performed because they have two different dominant spectral signatures, green for plants and red 

for soil (Guerrero et al. 2012). This spectral difference appears even in cases in which the leaf angle 

and small scale soil properties disrupt the homogeneity of these classes.
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 In a practical application of these VIs to VF quantification the selection of the flight altitude 

will depend on several factors, not only on the accuracy of the quantification. Therefore, the loss of 

about a 4% of accuracy could be assumed by the user if other important advantages are achieved by 

flying at 60 m instead of flying at 30 m altitude, as described before by Torres-Sánchez et al. (2013). 

For example, flying at 60 m allows the duplication of the area that can be overflown without 

problems related with the UAV’s energy autonomy. This would reduce the number of images needed 

to cover the whole studied crop, making it possible to map the VF in a shorter time. If the purpose for 

VF mapping is ESSWM, the accuracy loss could be overcome by creating a buffer around the detected 

weeds, which will reduce the chance of missing isolated weeds.

The study of VF in wheat fields in the early season could be used for the detection and 

mapping of weeds for ESSWM. Crops do not cover the soil entirely in the first growth stages, so if 

there are regions with low and high VF at early season in a crop field, it can be assumed that the 

regions with a high percentage of vegetation are infested by weeds. In this stage, mapping weeds in 

wheat using remote sensing presents much greater difficulties than in the case of the late-stage 

season for three main reasons (López-Granados 2011): 1) weeds are generally distributed in small 

patches, which makes it necessary to work with remote images at very small pixel sizes, often on the 

order of centimetres (Society 1996); 2) grass weeds and monocotyledonous crops (e.g., Avena spp. or 

Lolium spp. in wheat) or broad-leaved weeds and many dicotyledonous crops (e.g., Chenopodium

spp. in sunflower) generally have similar reflectance properties early in the season, which decreases 

the possibility of discriminating between vegetation classes using only spectral information; and 3) 

soil background reflectance may interfere with detection (Thorp and Tian 2004). The usual first step 

of the image processing is to separate plants (weeds and crop) from soil, and the second step is to 

discriminate between crop and weed plants (Torres-Sánchez et al. 2013). However, the difficulty of 

mapping early weeds in wheat fields (or other cereals sown in narrow crop rows) is related to the 

very small distance between crop rows (usually no greater than 15 cm) and the quick growth of these 

crops in the early growth stages, which cover the inter-row area in a few days, thus reducing the 

likelihood of weed detection.

Research about the evaluation of factors affecting the application of UAV platforms in weed 

science is still scarce. Some efforts are being made by the research community for the monitoring of 

crop growth or weed infestation in early stages using UAV images, although currently most of these 

investigations only show potential uses (Rasmussen et al. 2013) or are based on results with limited 

validation (Samseemoung et al. 2012). The influence of the spatial and spectral resolution of the UAV 

imagery in a multi-temporal study was evaluated in detail in our work. These factors were studied 

deeply under field conditions, and the results were evaluated with a complete validation set of 96 
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sampling frames in each of the six studied dates. Although sampling is a hard task in field conditions, 

it is absolutely needed for an objective evaluation of the results; otherwise the results can only be 

based on subjective interpretation. Moreover, investigations should also include all the operations 

needed to generate a whole georeferenced image of the studied field, including the mission planning 

and image mosaicking, because the advantage of UAV technology in comparison to other remote 

platforms is the ability to use mosaicked images to map large fields (Torres-Sánchez et al. 2013).  

7. CONCLUSIONS 

Visible spectral indices derived from imagery acquired from an UAV equipped with a low cost 

camera flying at low altitudes have shown the ability to discriminate vegetation in wheat fields in the 

early season. Among the tested indices, the two most successful were ExG and VEG, with ExG being 

the best for practical and farming applications due to its greater simplicity and its satisfactory mean 

accuracy and SD accuracy at 30 and 60 m flight altitudes for any image acquisition date. Therefore, 

the altitude and date to perform the flight depend on other parameters, such as the area to be flown 

over or the objective of the image acquisition. 

Otsu’s thresholding method can be applied to automatically determine the VI value that 

performs an adequate discrimination of vegetation. It achieves good accuracy results and allows the 

automation of the threshold selection, which is one of the key steps in vegetation discrimination 

through VIs. 

The methodology presented herein could be used for mosaicking a range of small to large 

areas depending on the autonomy of the UAV. This advantage, together with the high temporal 

resolution and the ultra-high spatial resolution obtained within a range of 2.47 to 0.74 cm, would 

allow a greater extension of the detail in the information extracted from the images for weed patch 

detection, which is the final objective of the research described herein. An accurate VF quantification 

at very high spatial resolution, like that obtained in this study, can be useful in precision agriculture 

for different crop monitoring proposes. In the field of ESSWM, the VF maps could be linked to weed 

infestation, if it is assumed that a higher VF is related to the presence of weeds.  

In conclusion, the most important achievement of this study was obtaining accurate VF 

georreferenced maps in wheat fields at the seedling stage with very high spatial resolution for 

further use in ESSWM using the ExG vegetation index obtained using an UAV and a low-cost camera. 

As stated in this paper, the flight altitude had very little effect on the accuracy of the performance of 

ExG, which is the most appropriate VI for mapping VF due to its high accuracy and its spatial and 

temporal consistency. The VF quantification through UAV images opens the door to further 

investigations, whose main objective should consist of the discrimination of the wheat row structure 
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for further identification of weed and crop plants, because the position of each plant relative to the 

crop rows might be the key feature used to distinguish between the weeds and crop plants. The 

reasoning behind this objective would be that once crop rows are mapped, if there is vegetation 

between them, this vegetation is most likely weed plants or weed patches, and thus, weeds could be 

discriminated and mapped. 
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CAPÍTULO 3 

AN AUTOMATIC OBJECT-BASED METHOD 
FOR OPTIMAL THRESHOLDING IN UAV 

IMAGES: APPLICATION FOR VEGETATION 
DETECTION IN HERBACEOUS CROPS 

An automatic object-based method for optimal thresholding in UAV images: Application for 
vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 114, 43–52. 
doi:10.1016/j.compag.2015.03.019 
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1. RESUMEN 

En agricultura de precisión, la detección de la vegetación en cultivos herbáceos en fase 

temprana es un primer y crucial paso para afrontar objetivos como el conteo de plantas para la 

monitorización de la germinación, o para la detección de malas hierbas en el ámbito del manejo 

localizado de malas hierbas en fase temprana. La muy alta resolución espacial de las imágenes 

tomadas por vehículos aéreos no tripulados (UAV por sus siglas en inglés), y las potentes 

herramientas suministradas por el análisis de imagen orientado a objetos (OBIA por sus siglas en 

inglés) son la clave en la consecución de la detección de vegetación en cultivos herbáceos en fase 

temprana. El presente trabajo de investigación desarrolla un innovador algoritmo OBIA de cálculo de 

umbrales basado en el método de Otsu, y estudia como los resultados del algoritmo son 

influenciados por los diferentes parámetros de segmentación de la imagen (escala, forma y 

compacidad). Junto a la descripción general del procedimiento, éste fue aplicado a la detección de 

vegetación en imágenes remotamente capturadas por un UAV con dos sensores (una cámara 

convencional en el visible y una cámara multiespectral) sobre campos de tres cultivos herbáceos 

diferentes (maíz, girasol y trigo). Se analizó el funcionamiento del algoritmo OBIA para clasificar la 

vegetación usando umbrales automáticamente calculados para dos índices de vegetación: el ExG y el 

NDVI. El parámetro de escala de la segmentación afectó a los histogramas de los índices, lo que llevó 

a cambios en el cálculo del umbral óptimo para los índices de vegetación. Los otros parámetros 

involucrados en la segmentación (forma y compacidad) mostraron menor influencia en la precisión 

de la clasificación. Aumentar el tamaño de los objetos conllevó un descenso en el error en la 

clasificación hasta que se alcanzó un óptimo. Tras este valor óptimo, incrementar el tamaño de los 

objetos provocó una menor precisión en la clasificación. 

2. ABSTRACT 

In precision agriculture, detecting the vegetation in herbaceous crops in early season is a first 

and crucial step prior to addressing further objectives such as counting plants for germination 

monitoring, or detecting weeds for early season site specific weed management. The ultra-high 

resolution of UAV images, and the powerful tools provided by the Object Based Image Analysis 

(OBIA) are the key in achieving this objective. The present research work develops an innovative 

thresholding OBIA algorithm based on the Otsu’s method, and studies how the results of this 

algorithm are affected by the different segmentation parameters (scale, shape and compactness). 

Along with the general description of the procedure, it was specifically applied for vegetation 

detection in remotely-sensed images captured with two sensors (a conventional visible camera and a 

multispectral camera) mounted on an unmanned aerial vehicle (UAV) and acquired over fields of 



Capítulo 3 

98  Tesis doctoral 

three different herbaceous crops (maize, sunflower and wheat). The tests analyzed the performance 

of the OBIA algorithm for classifying vegetation coverage as affected by different automatically 

selected thresholds calculated in the images of two vegetation indices: the Excess Green (ExG) and 

the Normalized Difference Vegetation Index (NDVI). The segmentation scale parameter affected the 

vegetation index histograms, which led to changes in the automatic estimation of the optimal 

threshold value for the vegetation indices. The other parameters involved in the segmentation 

procedure (i.e., shape and compactness) showed minor influence on the classification accuracy. 

Increasing the object size, the classification error diminished until an optimum was reached. After 

this optimal value, increasing object size produced bigger errors.  

3. INTRODUCTION 

In precision agriculture, detecting the vegetation in herbaceous crops in early season is a first 

and crucial step prior to addressing further objectives such as counting plants for germination 

monitoring, or detecting weeds for early season site specific weed management. Discrimination of 

the crop plants in their first stages of development needs images at very high spatial resolution, 

often in the order of mm or very few cm (Hengl 2006; López-Granados 2011). Also it is required that 

the images can be taken at the optimal moment for the desired purpose. The most suitable tool for 

accomplishing both requirements is the Unmanned Aerial Vehicle (UAV); UAVs flying at low altitudes 

(maximum altitude allowed in the Spanish law for UAVs is 120 m) allow acquiring images with very 

high spatial resolution (VHSR), and the low time required for launching an unmanned aerial mission 

makes it possible to take images just at the required moment. Furthermore, it has been 

demonstrated that vegetation indices (VI) calculated from UAV images are suitable for vegetation 

detection in herbaceous crops (Torres-Sánchez et al. 2014). VIs are the product of arithmetic 

operations performed with spectral information from the radiation reflected by the vegetation, and 

these operations enhance the spectral difference between classes.

VHSR images represent a challenge for classification because, unlike in lower resolution 

images, single pixels no longer capture the characteristics of the classification targets. Additionally, 

these images show higher intra-class spectral variability (Aplin 2006; Woodcock and Strahler 1987). 

For dealing with this spectral variability a new paradigm has emerged in recent years, the Object 

Based Image Analysis (OBIA) (Blaschke 2010). OBIA works with groups of homogeneous and 

contiguous pixels (called objects), which reduces the intra-class spectral variability caused by crown 

textures, gaps, and shadows. The basic idea of this process is to first group spatially adjacent pixels 

into spectrally homogeneous objects, and then conducting the classification using objects as the 

minimum processing units. Several studies (Addink et al. 2007; Drǎguţ et al. 2010; Karl and Maurer 
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2010; Moffett and Gorelick 2013) have focused on the importance of segment size, and have noted 

its influence on classification accuracy. The influence of size is related to the spectral heterogeneity 

of the objects; higher object size causes an increase in internal heterogeneity of the objects because 

they include more pixels. Therefore, it is important to study how the selection of the parameters 

used for defining the segmentation process can affect vegetation detection in UAV images. As Hay et 

al. (Hay et al. 2005) pointed out, ‘the real challenge is to define appropriate segmentation 

parameters (typically based on spectral homogeneity, size, or both) for the varying sized, shaped, and 

spatially distributed image-objects composing a scene, so that segments can be generated that 

satisfy user requirements.’

For achieving accurate and automatic vegetation detection, along with the correct 

segmentation parameters, it is necessary to find an automatic and efficient method to look for the VI 

threshold value that sets the breakpoint between vegetation and bare soil. There are several 

automatic methods for threshold calculation, among which Otsu’s (Otsu 1979) method is one of the 

most utilized for agronomical issues (Guijarro et al. 2011; Meyer and Neto 2008). It assumes that the 

image contains two classes of pixels (bare soil and vegetation when considering crop scenarios) and 

then calculates the optimum threshold based on minimizing combined spread (intra-class variance). 

It has the advantages of being easy to compute, stable, and not dependent on other a priori 

information. Furthermore, automation of the thresholding by using Otsu’s algorithm improves the 

transferability of the OBIA rule set to other images (Tiede et al. 2010) and it is useful to address the 

spatial variability of spectral values in VHSR images. However, despite the good results of the Otsu’s 

method in per-pixel analysis, it has not been described and tested in an OBIA environment. 

Taking into account the information and problems presented above, the objectives of the 

present study are to: 1) develop an automatic thresholding algorithm based on the Otsu´s method in 

an object-based framework, 2) study the influence of object size and other segmentation parameters 

in the classification outputs as affected by the type of image/camera/spatial resolution, and 3) 

evaluate the relationship between spectral thresholding and the object size in remote images with 

ultra-high spatial resolution. Finally, the resulting OBIA algorithm was tested for vegetation detection 

in UAV images acquired over three different crops in early season with two different sensors. 

4. MATERIALS AND METHODS 

4.1. Description of the automatic thresholding OBIA algorithm 

The rule set for automatic thresholding was developed by using the Cognition network 

language of the software eCognition Developer 8.9. This language offers a multitude of options 
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related to OBIA (Hay and Castilla 2008). It supports programming tasks such as branching, looping, 

and the use of variables. A general scheme of the procedure is shown in the figure 1.  

The first step in OBIA is the segmentation of the image. The image was segmented by using the 

multiresolution segmentation algorithm (MRSA) implemented in eCognition. MRSA is a bottom-up 

segmentation algorithm based on a pairwise region merging technique. It starts with one-pixel 

objects and merges them through an iterative process that minimizes the internal weighted 

heterogeneity of each object. In each iteration, objects are merged if the newly generated object 

does not exceed a heterogeneity threshold defined by the following algorithm settings: 1) scale 

parameter, 2) color/shape, and 3) smoothness/compactness. These factors can be controlled by the 

user:  

- Scale parameter, which limits the heterogeneity of the final objects. 

- Color/shape weights, which control how much the segmentation is based on image spectral 

(color) information vs object shape information.  

- Smoothness/compactness weights, which control how much the object shape tends to be 

spatially compact vs spectrally homogeneous (smooth) but less compact.  

Once the image is segmented, the value of the discriminant feature that is going to be 

thresholded is calculated and stored for each segment as an object variable. Then, the minimum 

value of this variable is searched and stored as a scene variable for subsequent use as the initial 

threshold to start the loop that leads to optimum threshold detection. Image objects with feature 

values higher than the initial threshold (all of them at the beginning of the loop) are classified as 

“foreground”, and the remaining objects are labelled as “background”. In the next step, the means of 

the feature for “foreground” and “background” objects are calculated and stored as scene variables, 

called “mean_f” and “mean_b”, respectively. Then, the weight of each class in the image is calculated 

and stored as two other scene variables: Wf and Wb, for the “foreground” and “background” classes, 

respectively: 

(1)

(2)

Once all of these variables are stored, and following the indications of Otsu’s thresholding 

method (Otsu 1979), the between-class variance of the image (BCV) is calculated and stored as 

another scene variable called BCV:

(3)
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When BCV is calculated for the initial threshold, the image objects are unclassified, and the 

initial threshold is incremented an amount named “increment”. The “increment” parameter is user-

configurable and its value will depend on the image histogram amplitude. All of the previous 

calculations are repeated for the new threshold, and its BCV is compared to that from the initial 

threshold. If the new BCV is higher than the previous one, its associated threshold is stored as “Opt 

threshold” and all the process is repeated. This “if-then” loop is stopped when all the possible values 

of the threshold are tested. The final threshold is the one that maximized the BCV, which had been 

already stored as “Opt threshold”.

Figure 1. Flowchart of the automatic thresholding method.

4.2. Rule set application for vegetation detection 

The rule set was applied to remotely-sensed images captured with two different sensors 

mounted on a UAV and acquired over fields of three different winter and summer herbaceous crops 
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(maize, sunflower and wheat). The plants were in their early growth stages that corresponds to the 

principal stage 1 (leaf development) of the "Biologische Bundesanstalt, Bundessortenamt und 

CHemische Industrie" (BBCH) extended scale (Meier 2001). Due to the differences on crop row 

separation (17 cm, 70 cm and 75 cm for wheat, sunflower and maize, respectively) and plant 

morphology (wheat and maize are monocotyledonous plants, and sunflower is a dicot), the images 

were very different between them, forming a complete image set to test the algorithm.

The remote images were acquired at 30 m flight altitude with two different sensors mounted 

separately in a quadrocopter UAV, model md4-1000 (microdrones GmbH, Siegen, Germany). The 

flight altitude and moment were in agreement with that used in Peña et al. (2013) for weed 

detection in a maize field. One of the used sensors was a conventional visible camera, model 

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan), which acquires 12-megapixel images in 

true Red-Green-Blue (RGB) colour with 8-bit radiometric resolution. The other sensor was a 

multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA), composed 

of six individual digital channels arranged in a 2×3 array, configured to acquire images with 8-bit 

radiometric resolution. The camera has user configurable band pass filters (Andover Corporation, 

Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths at B (450 nm), G (530 

nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm). Both images were stored 

in TIFF format. Detailed information about the configuration of the UAV flights and specifications of 

the vehicle and the cameras can be found in Torres-Sánchez et al. (2013).

Variability in crops characteristics and in the spectral and spatial image resolutions allow us to 

affirm that the thresholding OBIA algorithm was tested in six different scenarios. The selected images 

covered an area of about 250 m2 for each crop. These images were georeferenced by identifying ten 

ground control points and measuring their coordinates with a GPS receiver. These coordinates were 

then introduced into the images using ENVI software (ENVI 4.4., Research Systems Inc., Boulder, CO, 

USA). Due to the technical characteristics of each sensor, the images had different spatial 

resolutions; the pixel size was 1.14 cm for the conventional camera, and 1.62 cm for the 

multispectral camera. 

In these real scenarios, different MRSA parameters values were studied in order to quantify 

their efficiency for discriminating vegetation objects. The assignment of these parameters is easily 

controlled by the configuration panel of the MRSA in eCognition software. All the image bands were 

assigned the same weight in the MRSA, whereas the segmentation parameters were evaluated in 

two consecutive phases in order to study their influence on the thresholding method. Firstly, the 

scale parameter was independently tested by fixing the shape parameter to 0.4 (thus giving a weight 

of 0.6 to color) and giving an equal weight to the compactness and smoothness parameters (i.e., a 
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value of 0.5 each one). The scale parameter is the most important setting for controlling object size 

and, according to (Moffett and Gorelick 2013), it affects more strongly the segmentation results in

comparison to the minor impact of the remaining settings. In this first test, the scale values ranged 

from 2 to 40 in increments of 2 units; these values generated a set of segmentations including a big 

range of situations, from objects smaller than a crop plant, to objects including several plants and 

even bare soil. A value of 1, which equates to a pixel-oriented analysis, was also tested. Secondly, 

once the scale value that produced best classification accuracy was determined, shape/color and 

compactness/smoothness influence on classification was also studied by fixing the scale parameter 

to the best value obtained previously. In this second test, five values covering the whole range of 

possible values (0.1, 0.3, 0.5, 0.7 and 0.9) were assigned to each parameter of the MRSA algorithm, 

obtaining 25 new output segmentations.

Summarizing, twenty one different scale values were applied to the image dataset, which 

generated 126 output segmentations. Then, the thresholding method was tested on the Excess 

Green (ExG) images (visible-range camera) and on the Normalized Difference Vegetation Index 

(NDVI) images (multispectral camera) with the objective of separating between vegetation and bare-

soil objects (Equations 4 and 5, respectively). Several previous studies have concluded that these 

vegetation indices accentuate vegetation in the remotely-sensed images (Guijarro et al. 2011; Peña 

et al. 2013; Torres-Sánchez et al. 2014). A threshold increment of 0.01 was used in each algorithm 

step due to the narrow range of the selected indices.

(4)

(5)

4.3. Image analysis 

4.3.1. Influence of scale parameter on segmentation and thresholding rule set 

The influence of the scale parameter on the segmentation output was quantified, and 

relationship between segmentation scale and averaged object size was plotted for each image. For 

the analyzed images, histograms of the vegetation index values in the segmented images were 

constructed for four different scale values in order to analyze how the size of the objects affects the 

distribution of the values of the spectral indices. Additionally, for studying the influence of the size of 

the objects in the automatic thresholding, a dot plot was made depicting the relationship between 

the scale and the threshold calculated by the rule set. All of the graphics and data analysis were 

performed using JMP software (SAS, Cary, NC, USA). 
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4.3.2. Evaluation of the OBIA algorithm for quantifying vegetation coverage 

To evaluate the results of the discrimination between vegetation and bare soil attained by 

each combination of segmentation settings (see section 2.2), a systematic sampling procedure was 

conducted. In order to record real vegetation coverage, a vector shape file containing 30 square 

sampling frames, 1x1 m in size, and regularly distributed in every image was created using ArcGis 

software (ESRI, Redlands, CA, USA). The sampling area was representative of the vegetation observed 

in the experimental fields. Vegetation was manually delineated in all the sampling frames of the 

images in order to collect ground-truth data, i.e., the real vegetation coverage.  

The classification outputs were evaluated by calculating the difference between the 

percentage of the vegetation estimated by OBIA and the observed vegetation in the sampling frames 

(Equation 6). Values lower than 0 indicated under-estimation of the vegetation coverage and values 

higher than 0 indicated over-estimation. The classification error of the 30 frames was averaged for 

every segmented image. 

(6)

In order to show the efficiency of the presented algorithm, required time for thresholding was 

measured for each one of the images, considering the scale parameter leading to the lower 

classification error in each case. These computations were done using a standard computer with 16 

GB of RAM, an Intel Core i5 (Intel, Santa Clara, CA, USA) processor and a graphic card of 1 GB. 

5. RESULTS AND DISCUSSION 

5.1. Object size as affected by the segmentation scale parameter 

Figures 2 and 3 show the numerical and graphical variation, respectively, of the object size 

according to different scale parameter values after the application of the MRSA segmentation 

procedure. Object size was directly related to the scale parameter in all the cases, showing a 

different degree of variation for each type of image and crop. As stated by Karl and Maurer (2010), 

the scale parameter in the MRSA is used to control the final size of the objects (Baatz and Schaepe 

2000), and the use of coarser scales leads to the generation of larger objects. However, as noted by 

Moffet and Gorelick (2013) and Hay et al. (2005), it is not prescriptive of the final object size with 

independence of the image. 
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Figure 2. Effect of the scale parameter on the size (cm2) of the objects generated by the MRSA for the analyzed 

images. 

Figure 3. Segmentation outputs with different values of the segmentation scale parameter as affected by type 

of image (conventional-color from the visible camera in the left and color-infrared from the multispectral 

camera in the right) and type of crop. As a measure reference, the distance between crop rows was 70 cm in 

sunflower, 75 cm in maize, and 17 cm in wheat.
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These differences among the images were due to the different spatial resolutions of both 

sensors, and to the intrinsic agronomic characteristics of each studied crop. In the conventional color 

images, the biggest object size ranged from 398 cm2 in maize to 641 cm2 in sunflower. The degree of 

variation was higher in the multispectral images, in which the biggest object size ranged from 1,105 

cm2 in maize to the 2,142 cm2 in wheat. This higher size range was because the lower resolution of 

the multispectral camera is not enough for performing a good isolation of plants and bare soil, 

leading to the creation of a big amount of pixels with mixed spectral values of both classes. 

Therefore, the spectral homogeneity of the image was higher and the objects created by the MRSA, 

which takes the homogeneity into account with the scale parameter, were bigger. Consequently, the 

largest objects were generated in the multispectral image of wheat, where the small size of the 

plants and the low resolution of the sensor, lead to a higher homogeneity in the image. 

Figure 4. Influence of the segmentation scale parameter on the threshold determined by the OBIA rule set for 

each vegetation index. 

5.2. Automatic threshold value as affected by the scale parameter 

Figure 4 shows the influence of scale parameter on the threshold value calculated by the OBIA 

algorithm. In the three crops, the optimal thresholds established by the rule set for ExG slightly 

decreased when then scale parameter increased. This trend was more pronounced in maize (with 

ExG values between 0.17 and 0.10), followed by sunflower (0.10 – 0.06) and wheat (0.14 - 0.11). This 

downward trend might be caused by the fact that using low scale parameter values created small 
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vegetation objects, and the ones located at the centre of the plants usually have high vegetation 

index values, leading the thresholding method to select higher thresholds. When using higher scale 

parameter values, these vegetation objects are merged with the ones that are located at the plant 

borders and that have lower vegetation index values due to the mixture with bare soil objects. 

Consequently, the vegetation objects that cover complete plants have lower ExG values and the 

thresholding method selects lower thresholds. 

In the case of the NDVI threshold values, a clear trend was not observed, and the values 

oscillated around a threshold. This difference could be due to the higher spectral separability 

between vegetation and bare soil achieved with NDVI. 

5.3. Influence of the scale parameter on the vegetation index histograms  

Figures 5 and 6 show the histograms of the values of the vegetation indices for the different 

segmented images. The histograms were calculated from the two sensors, but only those from the 

values of 10, 20, 30 and 40 along the scale are shown so as not to overwhelm the figures.  

The range of the histograms showed a decreasing trend for both vegetation indices. This trend 

was stronger for the ExG values, as it can be viewed in Table 1. Histogram range reductions for ExG 

index were of 35%, 77% and 52% for maize, sunflower and wheat, respectively. For NDVI index, the 

range reductions were 19%, 17% and 27%, respectively. Narrowing of the ranges was probably for 

the same reason explaining the downward trend in ExG thresholds in relation to the scale parameter. 

This is because, when using lower scale parameter values, there are small objects that include pixels 

with extreme vegetation index values. However, when using higher scale parameter values, these 

small objects are integrated with larger ones, and the extreme values are smoothed because they are 

averaged with the other pixels inside the larger object. Consequently, at higher scales, extreme 

values disappear from the histogram and its range decreases. The lower degree of range reduction 

for the NDVI histograms could be related to the lower range of possible values that are allowed by its 

formula (Equation 5); while ExG can take values from -2 to 2, NDVI only takes values between -1 and 

1.  
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Figure 5. Histograms of the values of the ExG index in the images segmented by different scale parameters from 

the conventional camera. 

Figure 6. Histograms of the values of the NDVI index in the images segmented by different scale parameters 

from the multispectral camera. 
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Table 1. Some descriptive statistics of the histograms (N: number of samples; Min: minimum; Max: 

Maximum). 

Crop Index Scale N Min Max Range

Maize ExG 10 76 609 -1.000 1.206 2.206

20 21 972 -1.000 0.839 1.839

30 10 487 -1.000 0.638 1.638

40 6 236 -0.807 0.638 1.444

NDVI 10 20 836 -0.274 0.748 1.022

20 6 879 -0.189 0.685 0.874

30 3 594 -0.185 0.646 0.832

40 2 252 -0.185 0.646 0.832

Sunflower ExG 10 29 488 -0.897 0.887 1.783

20 8 600 -0.897 0.571 1.468

30 4 121 -0.330 0.348 0.678

40 2 456 -0.109 0.302 0.412

NDVI 10 9 466 -0.327 0.611 0.938

20 3 053 -0.327 0.592 0.919

30 1 661 -0.219 0.561 0.779

40 1 079 -0.219 0.561 0.779

Wheat ExG 10 106 462 -0.673 1.158 1.831

20 32 072 -0.372 0.818 1.191

30 15 682 -0.174 0.818 0.992

40 9 336 -0.052 0.818 0.870

NDVI 10 25 353 -0.271 0.477 0.748

20 6 554 -0.261 0.477 0.738

30 2 895 -0.159 0.453 0.613

40 1 649 -0.159 0.390 0.549

Histogram shape was constant for the ExG values in all of the segmented images, except for 

sunflower whose shape histogram varied slightly. By contrast, the increases in the scale parameter 

changed the NDVI histograms from a unimodal distribution to a multimodal distribution for maize 

and sunflower, representing the two classes in the image: bare soil for the peak with the lower NDVI 

value and vegetation for the peak with the higher value. This hypothesis is reinforced because the 

threshold calculated by the algorithm in these images is located near the valley between the two 

peaks of the histogram corresponding to the two classes in the image. The shift in the histogram did 

not appear for wheat because the image objects covered vegetation and bare soil and therefore their 

spectral values were mixed for the studied scale parameter values. Hay et al. (2005) detected a 

similar trend in the analysis of aerial forest images. In their work, the histograms developed a 

multimodal distribution whose peaks corresponded to the dominant object classes in the image. As 

they stated, this type of histogram information is only available when using OBIA. The shift in 

histogram shape affected the NDVI values but not the ExG values. This could be due to the higher 
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spectral separability between the vegetation and bare soil that can be achieved using information 

from the NIR zone of the electromagnetic spectrum, in which live vegetation exhibits a very 

characteristic response. ExG histograms for sunflower did not reach a multimodal distribution, but it 

can be observed that they show a tail for the larger scale parameter values. Probably, this is due to 

the fact that sunflower plants (or group of plants) are more easily isolated from their environment 

because it is a dicot crop and has broad stalked leaves and more compact shape compared with 

monocots. That is, shape of sunflower plants is nearly similar to a circle, whereas maize plants have 

elongate stalkless leaves and present a shape similar to a star with peaks, so the ExG values are more 

aggregated in a closed area. 

5.4. Vegetation detection 

5.4.1. Classification accuracy as affected by segmentation scale 

Differences in classification error with respect to object size, and consequently, to the scale 

parameter, for the three crops are presented in Figure 7. Object size influenced the quality of the 

classification in all cases. For ExG in all crops, small objects (i.e., small scale parameter values) led to 

an under-estimation of the vegetation. This under-estimation tended to diminish as the scale 

parameter increased, and the classification error was near zero for objects whose sizes were nearly 

the average size of the plants in the image. The best scale values for the conventional color image 

were 20 (96 cm2), 18 (278 cm2) and 4 (11 cm2) for maize, sunflower and wheat, respectively 

(classification outputs for these values can be viewed in figure 8). Over-estimation of the vegetation 

occurred for the larger object sizes. Changes in the classification error with scale parameter value 

showed a similar trend to that described in other works (Addink et al. 2007; Karl et al. 2010; Kim et 

al. 2011); as the object size increased, the error decreased until an optimum was reached, after 

which increasing the object size resulted in greater errors. This is indicative of the existence of an 

optimum segmentation size related to classification quality. Kim et al. (2011) stated that the average 

size of image objects is similar to that of the targeted ground features in an optimal segmentation.

For the color-infrared image the best scale parameter values were 36 (331 cm2), 12 (176 cm2), 

and 1 (2 cm2) for maize, sunflower and wheat, respectively (classification outputs for these values 

can be viewed in figure 8). There was not a clear trend relating object size and classification error for 

all the crops. This discrepancy with the results from the visible-range camera could be due to the 

lower spatial resolution of the multispectral camera, which would necessitate working with bigger 

objects. In maize the classification error diminished with the growing of the object size, reaching a 

value near to zero when the generated segments comprised larger vegetation areas, such as parts of 

crop rows or weed patches. The classification error was very low for all object sizes in sunflower, with 

optimal values close to a scale parameter value of 12 (176 cm2); this is because the compactness of 
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the sunflower plants, and the homogeneity of the NDVI values inside them led in all cases to 

segmentations in which the resulting objects almost did not cover bare soil areas. In wheat, the 

lower classification error for the multispectral image was achieved for the scale parameter of 1, 

which is equal to a pixel based analysis; this is due to the small size of the wheat plants, whose pixels 

can be only isolated in the multispectral resolution with objects of one pixel size. 

Figure 7. Classification error (and its associated standard error) as affected by object size and type of image. 1) 

Conventional-color image from the visible camera, at 1.14 cm/pixel, and 2) color-infrared image from the 

multispectral camera, at 1.62 cm/pixel.

Figure 8. Classification outputs for the best scale parameter for each crop and sensor. 

The time spent in thresholding each image for the scale parameter leading to the lower 

classification error was under one second in most cases, and in four of them was less than half 
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second (table 2). This processing speed makes the algorithm suitable for implementation in more 

complex classification algorithms needing vegetation detection as an intermediate step, such as the 

ones developed for weed detection in herbaceous crops in early season (Peña et al. 2013). The only 

exception for these low processing times was wheat in the color-infrared image, because the 

selected scale parameter generated small objects, leading the algorithm to consider a higher amount 

of objects in its looping process and, consequently, to consume more time in the thresholding 

operation. 

Table 2. Time spent by the thresholding algorithm in each crop. It was measured in each case for the scale 

parameter leading to the lower classification error.  

Maize Sunflower Wheat
Conventional color Scale parameter 20 18 4

Thresholding time (s) 0.795 0.266 0.250
Color-infrared Scale parameter 36 12 1

Thresholding time (s) 0.14 0.171 33.665

5.4.2. Classification accuracy as affected by segmentation shape and compactness parameters 

The best scale values for each crop and image, detailed in the previous section, were used to 

study the influence of shape and compactness parameters on classification accuracy. Figure 8 shows 

the classification error for the different combinations of values of shape and compactness. It can be 

seen that the errors were very similar for all the combinations. Bigger errors appeared only when the 

shape parameter was 0.9, especially for the color-infrared image in maize; this was because this 

value generated larger objects covering bare soil and vegetation, what affected their vegetation 

indices values because of the spectral values mixing and, consequently, led the thresholding 

algorithm to select an incorrect threshold. For the scale parameter studied, all the combinations of 

shape and compactness performed were able to delineate the plants. However, when the shape 

parameter was 0.9, there were objects covering bare soil and vegetation areas. These results confirm 

previous works from Moffett and Gorelick (2013), these authors stated that scale parameter affects 

more strongly the segmentation results in comparison to the minor relevance of shape and 

compactness.
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Figure 9. Classification error (and its associated standard error) as affected by shape and compactness 

parameters and type of image.  

6. CONCLUSIONS  

Automatic thresholding of spectral indices for vegetation classification in UAV images in an 

OBIA environment has been achieved by the development of an automatic and efficient algorithm. It 

has demonstrated its ability to automatically select a threshold from gray-level histograms 

independent of whether they were unimodal or multimodal histograms. Furthermore, it has the 

following advantages: 

- The rule set stably and automatically selects a threshold, allowing unsupervised 

classification. This is essential for achieving complete automation of OBIA algorithms.  

- It is a fast method (below one second in most cases) that does not require complicated 

calculations. It depends only on the mean and weight of the two classes used iteratively 

along the loop integrated in the rule set. 

- The method does not depend on the classes included in the analyzed image. It can be used in 

a wide range of situations; the only adaptation needed is to change the discriminant feature 

and the “increment” parameter. 

- Using this rule set in OBIA algorithms that have been developed for specific areas increases 

their transferability. This is because the elimination of absolute thresholds makes possible 

the application of the algorithms to images with different spectral values.  

The influence of the scale parameter on the accuracy of the image classification outputs was 

demonstrated. It affected the histograms of the vegetation indices for the segmented images and it 

consequently led to changes in the threshold selected by the rule set, especially when working with 
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the ExG index. Increasing the object size, diminished the classification error until an optimum was 

reached, after which increasing the object size resulted in greater errors. Shape and compactness 

parameters of the MRSA showed little influence over the classification accuracy.  

When tested with ultra-high resolution images taken from an UAV over crop fields, the rule set 

presented here achieved accurate vegetation classification results, with errors between 0 and 10%. 

Consequently, as part of a broader research program to generate early season site specific weed 

treatments, the algorithm is currently being used for vegetation detection in the development of a 

weed discrimination rule set in herbaceous crops. 
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1. RESUMEN 

El uso de imágenes remotas capturadas usando vehículos aéreos no tripulados (UAV por sus 

siglas en inglés) tiene un gran potencial para el diseño de tratamientos localizados de malas hierbas 

en fase temprana, tarea que no había sido posible anteriormente con imágenes tomadas desde 

aviones o satélites. Con el objetivo de crear un mapa de malas hierbas en un campo experimental de 

maíz en España, se ha desarrollado un procedimiento de análisis de imagen orientado a objetos 

(OBIA por sus siglas en inglés) robusto y totalmente automático, para esto se ha utilizado una serie 

de imágenes tomadas con un sensor multiespectral de seis bandas (rango visible e infrarrojo) a bordo 

de un UAV. El procedimiento OBIA combina varias características contextuales,  y jerárquicas basadas 

en objetos, y consta de tres fases consecutivas: 1) clasificación de las líneas de cultivo mediante la 

aplicación de una aproximación dinámica y auto-adaptativa de clasificación, 2) discriminación de 

cultivo y malas hierbas en base a su posición relativa con referencia a las líneas de cultivo,  y 3) 

generación de un mapa de infestación de malas hierbas con una estructura de cuadrícula. La 

estimación de la cobertura de malas hierbas a partir del análisis de imagen produjo resultados 

satisfactorios. La relación entre densidades de malas hierbas estimadas y reales tuvo un coeficiente 

de correlación R2=0,89 y un error medio cuadrático de 0,02. Un mapa con tres categorías de 

cobertura de malas hierbas fue producido con una precisión general del 86%. En el campo 

experimental, el área libre de malas hierbas era de un 23%, y el área con baja cobertura de malas 

hierbas (<5%) fue del 47%, lo que implica un gran potencial para la reducción de la aplicación de 

herbicidas u otros métodos de control de malas hierbas. El procedimiento OBIA calcula múltiples 

datos y estadísticos derivados del resultado de la clasificación, lo que permite el cálculo de los 

requerimientos de herbicida y la estimación del coste de las operaciones de control de malas hierbas. 

2. ABSTRACT 

The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous 

potential for designing detailed site-specific weed control treatments in early post-emergence, which 

have not possible previously with conventional airborne or satellite images. A robust and entirely 

automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images 

using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of 

generating a weed map in an experimental maize field in Spain. The OBIA procedure combines 

several contextual, hierarchical and object-based features and consists of three consecutive phases: 

1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 

2) discrimination of crops and weeds on the basis of their relative positions with reference to the 

crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed 
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coverage from the image analysis yielded satisfactory results. The relationship of estimated versus 

observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error 

of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In 

the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% 

weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed 

operations. The OBIA procedure computes multiple data and statistics derived from the classification 

outputs, which permits calculation of herbicide requirements and estimation of the overall cost of 

weed management operations in advance.  

3. INTRODUCTION 

Many agricultural crops require the use of herbicides as essential tools for maintaining the 

quality and quantity of crop production. Currently, the cost of herbicides accounts for approximately 

40% of the cost of all the chemicals applied to agricultural land in Europe (ECPA 2010). Associated 

environmental and economic concerns have led to the creation of European legislation on the 

sustainable use of pesticides (Williams 2012). This legislation includes guidelines for the reduction in 

applications and the utilization of adequate doses based on the degree of weed infestation. Both 

components are integrated in the agronomical basis of the precision agriculture principles and 

especially of site-specific weed management (SSWM). This consists of the application of customized 

control treatments, mainly herbicides, only where weeds are located within the crop field in order to 

use herbicides and doses according to weed coverage (Srinivasan 2006). SSWM typically uses new 

technologies to collect and process spatial information on the crop field. Remote sensing technology 

can play a role here as an efficient and repeatable method to obtain crop field information related to 

weed infestation. 

The analysis of remote images captured with aircraft and satellite platforms has resulted in 

numerous examples of weed mapping in late growth stages (de Castro et al. 2012; Koger et al. 2003; 

Peña-Barragán et al. 2007), although in many weed–crop systems, the optimal treatment time is 

early in the growth season when weeds and crops are in their seedling growth stages (López-

Granados 2011). However, discriminating small seedlings with airborne and satellite imagery is 

problematic due to the insufficient spatial resolution of these images. This difficulty might be now 

overcome using the new generation of remote platforms known as unmanned aerial vehicles (UAV) 

or unmanned aerial systems (UAS). UAVs can operate at low altitudes and capture images at very 

high spatial resolutions (a few cm), which is not feasible with conventional remote platforms. 

Moreover, UAVs can work on demand with great flexibility at critical moments, depending on the 

agronomic goals involved. This is crucial for detecting small weed and crop plants at early stages in 
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the majority of fields. UAV technology has been adapted and utilized by diverse groups interested in 

agricultural investigation (Zhang and Kovacs 2012), and a few studies have reported the use of UAVs 

in assessing weed distribution or invasion of plants in rangeland monitoring (Göktoǧan et al. 2010; 

Laliberte et al. 2010).

Along with spatial and temporal resolution requirements, spectral similarity between weed 

and crop plants, which occurs mainly in the early part of the growth season, makes discrimination 

between the two difficult (López-Granados 2011; Stafford 2000). This is an important limitation in 

the application of image analysis methods based on pixel information only. To address this limitation, 

a powerful procedure, such as object-based image analysis (OBIA) might be the only way to 

distinguish between weed and crop. The OBIA methodology first identifies spatially and spectrally 

homogenous units (objects) created by grouping adjacent pixels according to a procedure known as 

segmentation and next it combines spectral, contextual and morphological information to drastically 

improve image classification results (Blaschke 2010). In this process, the definition of the row 

structure formed by the crop is essential for further identification of plants (crop and weeds) because 

the position of each plant relative to the rows might be the key feature used to distinguish among 

the weeds and crop plants (Burgos-Artizzu et al. 2009). 

In the context of SSWM, the ultimate objective of detecting weed patches is to generate 

efficient decision support system data that can be used with specific spraying machinery (Shaw 

2005). For this purpose, several applications have been developed to delineate a restricted number 

of management zones based on crop status (Fridgen et al. 2004) or weed density thresholds in 

mature wheat fields (Gómez-Candón et al. 2012). However, the development of robust and 

automatic procedures for weed data acquisition, image analysis and delineation of weed cover zones 

is still challenging, even more so in early growth stages (López-Granados 2011). This research 

involves the whole process: acquisition of very-high-spatial-resolution remote images with a UAV, 

image analysis using object-based methods, and the ultimate objective of generating weed maps at 

early stages for in-season site-specific herbicide treatment. To achieve this objective, we developed 

an OBIA procedure consisting of three main phases: 1) automatic definition of crop rows within a 

maize field accomplished by combining spectral and contextual features in a customized looping rule 

set algorithm, 2) discrimination of weed seedlings and crop plants based on their relative positions, 

and 3) automatic generation of a weed coverage map in a grid framework adapted to the 

specification required by the herbicide spraying machinery.
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4. MATERIALS AND METHODS 

4.1. Study site 

Remote images were taken on May 5th, 2011 on a maize field located in Arganda del Rey 

(Madrid, Spain, coordinates 40.320 N, 3.477 W, datum WGS84), just when post-emergence herbicide 

or other control techniques are recommended. The flights were authorized by a written agreement 

between the farm owners and our research group. The maize field was naturally infested with 

Amaranthus blitoides (broad-leaved weed) and Sorghum halepense (grass weed). The maize was at 

the stage of 4–6 leaves unfolded, and the weed plants were similar in size or in some cases smaller 

than the maize plants (Figure 1). Several visits to the field were conducted for monitoring of crop 

growth and weed emergence and finally to select the best moment to take the set of remote images. 

An experimental plot of 140x100 m was delimited within the crop field to perform the flights. The 

coordinates of each corner of the flight area were collected with a global positioning system (GPS) for 

use in planning the flight route.  

Figure 1. Aerial view of the experimental field (a), showing the centers of the UAV aerial images in blue and the 

sampling points in black (see section 2.4), and in-field photograph of the study site (b), showing the maize rows 

and some patches of weed infestation.

4.2. UAV flights and remote images 

A model md4-1000 quadrocopter UAV (microdrones GmbH, Siegen, Germany) with vertical 

take-off and landing capabilities was used to collect the remote images (Figure 2a). This UAV can fly 

either by remote control or autonomously with the aid of its GPS receiver and its waypoint 

navigation system. It can carry any sensor that weighs less than 1.25 kg mounted under its belly. The 

images were collected with a Tetracam mini-MCA-6 camera (Tetracam Inc., Chatsworth, CA, USA), 

which is a lightweight (700 g) multispectral sensor with six individual digital channels arranged in a 
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2x3 array. Each channel has a focal length of 9.6 mm and a 1.3-megapixel (1,280 x 1,024 pixels) 

CMOS sensor that stores images on a compact flash card. The camera has user-configurable band-

pass filters (Andover Corporation, Salem, NH, USA) of 10-nm full width at half-maximum and center 

wavelengths of 530, 550, 570 (the green region of the electromagnetic spectrum), 670 (the red 

region), 700 and 800 nm (the near-infrared region). The software PixelWrench2 was supplied with 

the camera to provide full camera control and image management, including correction of the 

vignette effect, alignment of RAW image sets and building of multi-band TIFs (Figure 2b), as 

explained in (Torres-Sánchez et al. 2013). 

Figure 2. Unmanned quadrotor-type aerial vehicle flying over the crop field (a), and aerial image (color–infrared 

composition) obtained by the UAV at an altitude of 30 m (b), showing the maize rows, some weed patches and 

the Spectralon® panel.

The flight altitude was 30 m above ground level, yielding 20 images of 2-cm spatial resolution 

to cover the whole experimental field. During the UAV flights, a barium sulphate standard 

Spectralon® panel (Labsphere Inc., North Sutton, NH, USA) 1 x 1 m in size was placed in the middle of 

the field to calibrate the spectral data (Figure 2b). Digital images captured by each camera channel 

were spectrally corrected by applying an empirical linear relationship (Hunt, Jr. et al. 2010). Equation 

coefficients were derived by fitting the digital numbers of the MCA imagery located in the spectralon 

panel to the spectralon ground values.

4.3. Weed mapping by object-based image analysis (OBIA) 

The spectral characteristics and general appearance of crop and weed plants are highly similar 

in the early season (López-Granados 2011; Stafford 2000) and are even more pronounced in remote 

images (Torres-Sánchez et al. 2013). Therefore, the effectiveness of weed discrimination might be 

increased by taking advantage of the relative position of every plant with reference to the crop row 

structure (Burgos-Artizzu et al. 2009). This information can be included in the classification procedure 
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using the OBIA methodology, allowing the combination of spectral, contextual and morphological 

information, among other features, of the objects created using a procedure known as segmentation 

(Peña-Barragán et al. 2011). The commercial software eCognition Developer 8 (Trimble GeoSpatial, 

Munich, Germany) was used to analyze the UAV images and develop an OBIA procedure. The rule set 

algorithm for weed mapping ran automatically and consisted of three consecutive phases: 1) 

classification of crop rows, 2) discrimination between crop plants and weeds based on their relative 

positions, and 3) generation of a weed infestation map in a grid structure. A flowchart of the process 

is shown in figure 3.

Figure 3. Flowchart of the OBIA procedure for classification of crop rows and weeds and generation of a weed 

infestation map.
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4.3.1. Crop row classification 

A dynamic and auto-adaptive classification approach was used to define the crop row 

structure, by mean of a combination of several object-based features that characterize a set of 

regular and quasi-equidistant lines of plants. In this process, the UAV images were segmented into 

homogeneous multi-pixel objects using the multiresolution algorithm (Baatz and Schaepe 2000). 

Segmentation is a bottom-up region-merging process in which the image is subdivided into 

homogeneous objects on the basis of several parameters (band weights, scale, color, shape, 

smoothness and compactness) defined by the operator. Two levels of segmentation were 

independently used throughout the procedure (Figure 4a): 1) a level at a scale of 140, to define the 

main orientation of the crop rows, and 2) a level at a scale of 10, to generate smaller objects for crop 

and weed discrimination. In both cases, the values of the other parameters involved in the 

segmentation were 0.9, 0.1, 0.5 and 0.5 for color, shape, smoothness and compactness, respectively. 

After segmentation, the normalized difference vegetation index (NDVI; (Rouse et al. 1974)) 

was used to classify objects of vegetation (Figure 4b) as being those with NDVI values greater than 

0.20. NDVI was selected as the best index for use in performing this classification, compared to other 

vegetation indices (Torres-Sánchez et al. 2013). A customized merging operation was then performed 

to create lengthwise vegetation objects, following the shape of a crop row. In this operation, two 

candidate vegetation objects were merged only if the length/width ratio of the target object 

increased after the merging. Next, the object that was largest in size and with orientation close to the 

row orientation was classified as a seed object belonging to a crop row. Lastly, the seed object grew 

in both directions, following the row orientation, and a looping merging process was performed until 

all the crop rows reached the limits of the parcel (Figure 4c). Every phase of the crop row 

classification process is described in detail in (Peña-Barragán et al. 2012).

4.3.2. Discrimination of crop and weeds 

After classifying all the crop rows within an image, the algorithm generated a buffer zone along 

the longitudinal axis of each row by applying a chessboard segmentation process at an upper level of 

hierarchy. Two or more levels of segmentation form a hierarchical structure in the OBIA paradigm, in 

which super-objects belong to the upper level and include one or more sub-objects that belong to 

the lower level. In this case, the width of the buffer zone (upper hierarchical level) was defined by the 

average size of the vegetation objects in contact with the row structure. Next, the vegetation sub-

objects located entirely below the buffer zone (lower hierarchical level) were classified as crop 

plants, and others were classified as weeds (Figure 4d). A more complex decision rule was made in 

the case of sub-objects located below the edge of the buffer zone. In this case, the sub-objects in 
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contact with or very close to other weeds were classified as weeds because aggregation among weed 

plants, i.e., weed patches, was generally observed (Heijting et al. 2007). 

Figure 4. Partial view of the outputs of the OBIA procedure at each step: a) segmentation outputs at scales of 

140 (in blue) and 10 (in black), used to calculate row orientation and define vegetation objects, respectively; b) 

classification of objects of vegetation and bare soil ; c) definition of the crop row structure (in black); d) 

classified image with crop, weeds and bare soil; e) grid framework of the inter-row area; f) weed coverage map 

showing three levels of infestation (low, moderate and high), crop rows and weed-free zones. 



Weed mapping in early-season maize fields

Jorge Torres Sánchez  127 

4.3.3. Weed coverage mapping 

After weed–crop classification, the algorithm built a grid framework of the inter-row area by 

applying two consecutive processes: 1) copying the existing inter-row object level to an upper 

position, and 2) chessboard segmentation of this upper level and generation of grids of user-

adjustable size (Figure 4e). For example, in this investigation, the grid length used was 1 m and the 

grid width used was the inter-row distance (0.7 m on average). Therefore, a new hierarchical 

structure was generated in the inter-row area between the grid super-objects (upper level) and the 

weed and bare-soil sub-objects (lower level). Next, an estimate of the weed coverage (% of weeds) 

was automatically calculated from the ratio of weed pixels to total pixels per grid (Burgos-Artizzu et 

al. 2009; Donald 2006). This calculation was based on the hierarchical relationship between grid 

super-objects and weed-infested sub-objects. Lastly, weed cover was also mapped on the basis of a 

number of user-adjustable categories defined by infestation thresholds. For example, in this 

investigation, the weed map identified both weed-free zones and weed-infested zones, which were 

categorized at three different levels of infestation, as follows: 1) low (<5% weed coverage), 2) 

moderate (5–20% weed coverage) and 3) high (>20% weed coverage) (Figure 4f). Both the grid 

dimensions and the number and thresholds of the weed infestation categories can be customized on 

the basis of cropping patterns and the specifications required by the herbicide spraying machinery. 

4.4. The evaluation of the methodology 

The rule set algorithm was created and configured using two of the aerial images and was 

tested using the rest of the images. To evaluate the results of the algorithm, a systematic on-ground 

sampling procedure was conducted during the UAV flight. The sampling consisted of placing 28 

square white frames, 1x1 m in size, throughout the studied surface (Figure 5). The distribution of the 

samples was representative of the distribution of weed coverage levels in the experimental field. 

Weed mapping is considered a more complicated task in cases of low and moderate levels of weed 

infestation (greater confusion is possible due to the presence of bare soil) than in cases of high levels 

of weed infestation (at which bare soil has a minor influence) or weed-free zones (with no influence 

of weeds). For this reason, the sampling frames were primarily located in zones with low and 

moderate weed coverage levels rather than in weed-free zones or in zones with high or very high 

infestation levels.  
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Figure 5. On-ground photographs (1) and UAV images (2) of the 1x1-m frames used in the ground-truth 

sampling of three different categories of weed coverage: a) low, b) moderate, and c) high. 

Every frame was georeferenced with a GPS and photographed to compare on-ground weed 

infestation (observed weed coverage) with the outputs of the image classification process (estimated 

weed coverage). Weed coverage in the on-ground photographs was extracted through the 

application of a specific greenness index that accentuates the green color of the vegetation (Romeo 

et al. 2013). After a visual assessment of several indices, the excess green index (Torres-Sánchez et al. 

2013; Woebbecke et al. 1995) was selected for use and applied to the photographs. Next, pixels with 

values greater than zero were classified as vegetation (weed and crop), and finally, weed pixels were 

isolated by manually masking crop row areas. 

The fractions of weed area in the on-ground and aerial images were converted to percentages 

of the total area within every frame and were compared using a 1:1 line, which should have a 

correspondence of 1 in an ideal situation. This correspondence was evaluated by calculating the 

slope, the intercept and the coefficient of determination (R2) of a linear regression model. The root 

mean square error (RMSE) was also calculated as an additional measure of the overall error of the 

estimations.  

The accuracy of the classified images was also quantified by calculating the confusion matrix 

between weed mapping outputs and weed coverage in all the sampling frames grouped in the three 

categories (low, moderate and high weed densities) previously defined. The confusion matrix 

quantifies the overall accuracy (OA) of the classification, as well as its omission (OE) and commission 

(CE) errors in each category (Congalton 1991).
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5. RESULTS AND DISCUSSION 

5.1. Weed map information provided by the OBIA procedure 

An advantage of the OBIA procedure, compared to traditional pixel-based methodologies, is its 

ability to compute multiple data and statistics derived from the image analysis and classification. 

Moreover, this information can be exported in several file formats, e.g., vector, image, ASCII, tables, 

etc. The algorithm developed in this study can compute and export information at several levels, 

depending on its position in the segmentation hierarchy, as described below.  

5.1.1. Whole field: upper segmentation level 

Global information for the crop field, including field dimensions, number of crop rows, crop 

row orientation, average crop row separation, weed-free area and total area of each weed coverage 

category, was computed at the upper segmentation level. A vector shapefile with the limits of the 

field and a georeferenced image file of the gridded weed map were also produced, as well as other 

image files of intermediate classification outputs, if required. The global data computed for the 

experimental field are given in table 1. The experimental field occupied 1.4 ha and had 142 crop rows 

approximately 140 m in length, separated from each other by 0.70 m on average. The area free of 

weeds was 23%, and the area with low weed coverage (<5% of weeds) was 47%, indicating a high 

potential for reducing herbicide applications or other weed operations in this field. 

Table 1. Global information on the whole experimental field computed according to the OBIA procedure at the 

upper segmentation level. 

Global Feature Value
Field features

Area (m2) 14,000
Perimeter length (m) 480
Maximum length (m) 140
Minimum length (m) 100
Lat coordinate of the field center (°) 40.320 N
Lon coordinate of the field center (°) 3.477 W

Crop row features
Number of rows (n) 142
Average row orientation (°) 32
Maximum row length (m) 140
Minimum row length (m) 140
Average distance between rows (m) 0.70

Weed map features
Number of grid units (n) 19,880
Grid units free of weeds (n) 4,572
Grid units with weeds (n) 15,308
Area of grid units free of weeds (m2,%) 3,258 (23%)
Area of grid units with weeds (m2,%) 10,742 (77%)
Area with low weed coverage (<5%) (m2,%) 6,618 (47%)
Area with moderate weed coverage (5-20%) (m2,%) 3,230 (23%)
Area with high weed coverage (>20%) (m2,%) 894 ( 7%)
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5.1.2. Crop row structure: Intermediate segmentation level 

Detailed information on each inter-row unit, including the identification number 

(automatically assigned), the geographic coordinates of the row extremes, the length and width, the 

percentage of area free of weeds, and the percentage of each category of weed coverage 

considered, was produced at the intermediate segmentation level. An example of crop row data 

computed for the experimental field is given in table 2. Among the rows indicated, weeds were found 

in 100% of the grid units of row 141, which had 10% weed infestation. In contrast, row 1 only had 3% 

weed infestation and 57% of its grid units were free of weeds.  

Table 2. Inter-row information for the experimental field computed by the OBIA procedure at the intermediate 

segmentation level.  

Start End Size (m) # Weed-infested grid units
Row 

ID
Lat 

(40°N)
Lon 

(3°W)
Lat 

(40°N)
Lon 

(3°W)
Length Width Weed-free

Low
(<5%)

Moderate
(5–20%)

High
(>20%)

Total

1
19´ 

13.17”
28´ 

38.93”
19´ 

17.00”
28´ 

35.72”
140 0.70 57 46 7 0 3

2
19´ 

13.15”
28´ 

38.90”
19´ 

16.97”
28´ 

35.69”
140 0.70 29 50 14 7 6

3
19´ 

13.14”
28´ 

38.86”
19´ 

16.95”
28´ 

35.65”
140 0.68 21 39 29 11 8

…. …. …. …. …. …. …. …. …. …. …. ….

141
19´ 

11.55”
28´ 

35.29”
19´ 

15.43”
28´ 

32.03”
140 0.75 0 43 53 4 10

142
19´ 

11.54”
28´ 

35.26”
19´ 

15.45”
28´ 

32.06”
140 0.69 50 27 15 8 6

5.1.3. Weed infestation in grid units: lower segmentation level 

Detailed information on each grid unit, including the identification number, geographic 

coordinates, dimensions, relative position within the crop row, distance to the start and the end of 

the crop row, weed coverage percentage and weed coverage category, was produced at the lower 

segmentation level. A list of the data computed in every grid unit of the experimental field is given in 

table 3. Among the grid units indicated, the highest weed coverage was measured in grid unit 3 

(22%), located two meters from the beginning of row 1. In contrast, grid unit 1 was free of weeds. 

The OBIA procedure generated a geo-referenced weed map that can be converted into a 

prescription herbicide application map and can then be transferred to machinery embedded with 

technologies for practical application of site-specific weed control strategies. The information 

provided in tables 1, 2 and 3 can be utilized by decision-making systems to calculate herbicide 

requirements or other weed operations in the field for the purposes of optimizing weeding 

machinery path planning and estimating the overall cost of weed management operations in advance 

(Pedersen et al. 2006). Moreover, multi-temporal analysis of abundance and distribution of weeds 
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within the same field is very helpful in studies of weed population dynamics and weed–crop 

interactions (e.g., crop yield losses). 

Table 3. Grid information for the experimental field computed by the OBIA procedure at the lower segmentation 

level.  

Coordinates Dimensions (m) Position in row Weed coverage

Grid ID Lat (40°N) Lon (3°W) Length Width Row ID Distance to 
start (m)

Distance to 
end (m)

% of Weeds Weed category

1 19´ 13.17” 28´ 38.93” 1 0.70 1 0 140 0 Weed-free
2 19´ 13.20” 28´ 38.90” 1 0.70 1 1 139 3 Low
3 19´ 13.23” 28´ 38.87” 1 0.70 1 2 138 22 High
…. …. …. …. …. …. …. …. …. ….

19879 19´ 15.40” 28´ 32.05” 1 0.69 140 139 1 7 Moderate
19880 19´ 11.54” 28´ 35.26” 1 0.69 140 140 0 4 Low

5.2. The evaluation of the weed map  

The algorithm developed in this study identified and counted the rows in the training images 

with 100% accuracy and only had minor errors in classifying short rows located in the corners of 

some testing images. The definition of the longitudinal edge of the crop rows was strongly affected 

by the presence of weed plants very close to or within the crop rows. The accuracy of the 

methodology was evaluated by comparing the estimation of weed coverage derived from the UAV 

image classification and the values observed in the on-ground sampling photographs (Figure 6). The 

relationship between the estimated and observed weed densities was highly satisfactory, with a 

coefficient of determination of R2=0.89 and an RMSE=0.02, indicating good agreement in the three 

categories considered.  

At low weed coverage, most values were located above the 1:1 line, indicating some degree of 

overestimation of the weed infestation. From an agronomical perspective, this pattern of results is 

not adverse because it reduces the chance of missing isolated weeds. That is, it takes into account 

the fact that farmers might choose to treat weed-free zones, rather than assume the risk of allowing 

weeds to go untreated (Gibson et al. 2004). In contrast, the OBIA procedure slightly underestimated 

weed infestation at moderate and high weed densities, which is less important if it is corrected in the 

design of the herbicide prescription maps (Gómez-Candón et al. 2011). 
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Figure 6. Observed and estimated weed coverage (%) inside the sampling frames from on-ground photographs 

and UAV image analysis, respectively.

The weed map, with weed infestation levels classified in three categories, was also evaluated 

using the confusion matrix shown in table 4. The matrix indicates an overall accuracy of 86% and a 

kappa index of 0.76. The classification was over grid units, not over pixels, so the OA was the 

percentage of frames correctly classified (the number correct frames as a percentage of the total 

number of sampling frames). Confusion between frames was minor and only occurred between 

consecutive categories. The matrix also indicates the omission and commission errors in each 

category. OE indicates the proportion of frames with an observed weed coverage that was 

misclassified as being of a different coverage, and CE indicates the proportion of frames classified 

with levels of weed coverage that really correspond to other levels of coverage. As previously 

mentioned, only errors of underestimation of the weed category are important from the perspective 

of weed control (López-Granados 2011), e.g., reporting 0% at low and high weed densities and 

reporting 17% of the frames at moderate weed coverage. 
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Table 4. Classification matrix for three categories of weed coverage by comparing ground-truth weed sampling 

and the weed map derived from the UAV image classification. 

Ground-truth weed sampling
UAV weed map

Low
(<5%)

Moderate
(5–20%)

High
(>20%)

Number of 
frames

Omission 
Error

Underestimation 
Error

Low (<5%) 12 1 13 8% 0%
Moderate (5–20%) 2 9 1 12 25% 17%

High (>20%) 3 3 0% 0%
Number of frames 14 10 4 28
Commission Error 15% 10% 25%

Correct classifications are shown in bold.
Overall accuracy = 86%, Kappa index = 0.76

6. CONCLUSIONS 

An unmanned aerial vehicle and a six-band multispectral camera were used to collect remote 

images of a maize field in the early season for the purpose of generating weed maps for further early 

SSWM. A robust and automated OBIA procedure was developed for the automatic discrimination of 

crop rows and weeds in georeferenced and 2-cm spatial resolution remote images. The task was 

complex due to both the spectral properties and general appearance of weeds and crop plants are 

very similar in their early growth stages, and due to the difficulties created by variability and 

changing conditions in natural crop fields. The algorithm efficiently identified all the crop rows based 

on their linear pattern and on the contextual features of the vegetation objects that belong to the 

rows. Weed plants located in the inter-row area were then distinguished from crop plants on the 

basis of their relative positions with respect to the crop rows. Lastly, the weed cover percentages in 

three categories were determined to generate a weed map in a grid framework. The algorithm 

yielded very satisfactory results in most cases.  

The OBIA procedure computes multiple data and statistics derived from the image analysis and 

the classification outputs that can be exported in image, vector and table file formats. The tables and 

weed map provided helpful information that can be used in decision-making systems to calculate 

herbicide requirements and estimate the overall cost of weed management operations. 

The combination of ultra-high-spatial-resolution UAV remote images and the OBIA procedure 

developed in this study permits the generation of weed maps in early maize crops for use in planning 

the application of in-season weed control measures, which has not been possible previously with 

traditional airborne or satellite images. This technology can help in the implementation of the 

European legislation for the sustainable use of pesticides, which promotes reductions in herbicide 

applications and the utilization of doses appropriate to the levels of weed infestation present. 
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1. RESUMEN 

Para optimizar la aplicación de herbicidas en cultivos se necesitan mapas de malas hierbas 

obtenidos de forma precisa y en el momento requerido. En este contexto, la presente investigación 

cuantificó la eficacia y limitaciones de imágenes remotas tomadas con un UAV para la detección 

temprana de malas hierbas en estado de plántula. La capacidad para discriminar malas hierbas fue 

significativamente afectada por la resolución espectral (tipo de cámara), espacial (altura de vuelo) y 

temporal (fecha del estudio) de las imágenes. Las imágenes en color-infrarrojo tomadas a 40 m de 

altura y 50 días tras la siembra (fecha 2), cuando las plantas tenían 5-6 hojas verdaderas, dieron lugar 

a la mayor precisión en la detección de malas hierbas (91%). A esta altura de vuelo, las imágenes 

tomadas antes de la fecha 2 tuvieron resultados ligeramente mejores que las tomadas después. Sin 

embargo, esta tendencia cambió en las imágenes en rango visible tomadas a 60 o más metros de 

altura, las cuales arrojaron resultados notablemente mejores en la fecha 3 (57 días tras la siembra) 

gracias al mayor tamaño de las plantas. Nuestros resultados mostraron los requerimientos en cuanto 

a resolución espectral y espacial necesarios para generar un mapa de malas hierbas en fase 

temprana, así como el mejor momento para la toma de las imágenes con un UAV, con el objetivo 

último de aplicar estrategias de control localizado de malas hierbas. 

2. ABSTRACT 

In order to optimize the application of herbicides in weed-crop systems, accurate and timely 

weed maps of the crop-field are required. In this context, this investigation quantified the efficacy 

and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection 

of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery 

spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions. 

The colour-infrared images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 

true leaves, had the highest weed detection accuracy (up to 91%). At this flight altitude, the images 

captured before date 2 had slightly better results than the images captured later. However, this 

trend changed in the visible-light images captured at 60 m and higher, which had notably better 

results on date 3 (57 days after sowing) because of the larger size of the weed plants. Our results 

showed the requirements on spectral and spatial resolutions needed to generate a suitable weed 

map early in the growing season, as well as the best moment for the UAV image acquisition, with the 

ultimate objective of applying site-specific weed management operations.
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3. INTRODUCTION 

Sunflower is the most important annual oilseed crop in southern Europe and the Black Sea 

area, with over 5 M·ha grown annually (FAO 2014). Spain has 0.8 M·ha of sunflowers (MAGRAMA 

2014). The patchy distribution of weeds in sunflower fields has already been demonstrated using on-

ground sampling (M. Jurado-Expósito et al. 2009; Montserrat Jurado-Expósito et al. 2003) and 

remote imagery from piloted aircraft (Peña-Barragán et al. 2007). Although the distribution of weeds 

is patchy, herbicides are usually broadcast over entire fields, even onto the weed-free areas. To 

overcome this problem, site-specific weed management (SSWM) is used to spray an adapted 

herbicide treatment only on weed patches and/or to adjust different herbicide applications 

according to weed species composition, e.g., herbicide resistant, broadleaved or grass weeds. Thus, 

one of the crucial components for SSWM is accurate and timely weed maps, which must be 

generated to design the corresponding site-specific herbicide applications (Shaw 2005). With the 

SSWM approach, the hope is to also reduce herbicide use. 

This strategy fits well with European concerns on herbicide use (Horizon 2020, European 

Commission, Societal Challenge 2: Sustainable Food Security. SFS-3-2014: Practical solutions for 

native and alien pests—including weeds—affecting crops) and has prompted the European Union to 

enact restrictive legislation (Regulation EC No. 1107/2009 and Directive 2009/128/EC). The 

legislation requires action to achieve the sustainable use of pesticides and to promote the use of the 

most advanced and latest technologies. Of the advanced technologies in weed research today, one of 

the most promising and innovative is the use of Unmanned Aerial Vehicles (UAVs or drones) 

equipped with a perception system for mapping weeds. The maps generated from the remote 

images captured with the UAV can be used for the further design of appropriate site-specific control 

measures. 

Compared with other remote platforms such as satellites or piloted aircrafts, UAVs can operate 

at low altitudes (e.g., <120 m), even on cloudy days, and can provide an ultra-high spatial resolution 

(e.g., pixels < 3 cm) image of the entire crop field. Configurations and specifications for an UAV to 

map weeds for early site-specific weed management have been reported by (Torres-Sánchez et al. 

2013). The UAV can be programmed on demand and it can fly with great flexibility and collect 

remote imagery of crops at critical times in the growing season, thereby improving the farmer’s 

decision-making process (Lelong et al. 2008). The total availability is fundamental for UAVs to 

perform a multi-temporal study in early weed detection and to determine the best time for taking 

the imagery needed to design post-emergence herbicide control strategies, just when the crop and 

weeds have similar appearance and spectral characteristics (López-Granados 2011; Torres-Sánchez, 

Peña, et al. 2014). With the high spatial and temporal resolution requirements and the spectral 
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similarity between weed and crop seedlings, remote-sensed discrimination of early-season crop and 

weeds remains a challenge in weed research. 

According to (Yu et al. 2006), one of the inherent problems with increasing the spatial 

resolution of remote images is that single pixels no longer capture the characteristics of classification 

targets. This produces an increase in intra-class spectral variability and, subsequently, a reduction in 

statistical separability among classes with conventional pixel-based classification methods, which can 

involve a reduction in classification performance and accuracy in comparison with coarser resolution 

images. Object-based image analysis (OBIA) is a powerful procedure and a fine alternative to the 

pixel-based methods (Blaschke 2010). The OBIA approach first identifies spatially and spectrally 

homogenous units (objects) created by grouping adjacent pixels according to a procedure known as 

segmentation. It then develops automated and auto-adaptive classification methods by using the 

objects as the minimum information units and combining their spectral, contextual (position, 

orientation), morphological and hierarchical information. This methodology has been used 

successfully for segmenting and classifying a QuickBird satellite image as the first step in isolating 

wheat fields from other soil uses for further detection of cruciferous weed patches at a late growth 

stage (de Castro et al. 2013). Recently, Peña et al. (2013) translated the OBIA strategy to early-season 

weed discrimination in maize by using UAV imagery and a three-step automatic classification 

approach: (1) image segmentation into multi-pixel regions that define plants (crop and weeds) and 

soil background objects; (2) discrimination of vegetation objects based on spectral information; and 

(3) classification of crop and weed plants based on the position of each plant relative to the crop 

rows. This OBIA strategy produced maps of three weed coverage categories, and (Peña et al. 2013)

concluded that an accurate definition of the crop-row structure was essential for the subsequent 

discrimination between crop and weeds.

Another crucial point for improving the discrimination of weeds in ultra-high spatial resolution 

images would be to enhance the differences among vegetation and non-vegetation (mostly bare soil) 

objects by using vegetation indices as well as to determine the optimal threshold value that sets the 

breakpoint between both general classes (Montalvo et al. 2013). One of the automatic methods for 

threshold calculation is Otsu’s (Otsu 1979), which is commonly applied to binary classification (in our 

case, bare soil and vegetation) and calculates the optimum threshold based on minimising combined 

spread (intra-class variance). A recent evaluation of the performance of Otsu’s threshold method in 

UAV images (Torres-Sánchez et al. 2015) considered two different vegetation indices as well as the 

influence of image resolution and objects size (i.e., segmentation scale), and concluded that these 

parameters are critical to accurately characterise the spectral threshold for a precise classification of 

vegetation (crop and weeds) and non-vegetation objects. 
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Accounting for the factors introduced previously, the objectives of this work were as follows: 

(1) to determine the optimum configuration of the UAV flight for the altitude, the date of flight (i.e., 

crop and weed phenological stage) and the type of sensor (visible-light vs. visible-light + near-infrared 

multispectral cameras); (2) to determine the best sensor for enhancing vegetation (crop and weed) 

and bare soil class discrimination as affected by the vegetation index applied; and (3) to design and 

evaluate an OBIA procedure for crop and weed patch detection. Limitations and opportunities of using 

higher flight altitudes were also analysed for each sensor, aiming to optimise the image acquisition 

and classification processes. 

4. EXPERIMENTAL SECTION 

4.1. Study Site 

The multi-temporal study was carried out in a sunflower field situated at the public farm 

Alameda del Obispo, in Córdoba (southern Spain, coordinates 37,856N, 4806W, datum WGS84). The 

sunflower crop was sown on 15 April 2014, at 6 kg·ha−1 in rows 0.70 m apart, and emergence of the 

sunflower plants began 15 days after sowing (DAS). An area of approximately 0.5 ha, with flat ground 

(average slope <1%) and naturally infested by broadleaved weeds such as Chenopodium album L. 

and Convolvulus arvensis L, was studied in detail. Weed and crop plants were in the principal stage 1 

(leaf development) from the BBCH extended scale (Meier 2001) during the study and grew from four 

true leaves (code 14–16) in the beginning of the experiment to eight true leaves (code 18) at the end. 

4.2. UAV Flights: Camera, Altitudes and Dates 

The remote images were acquired with two different cameras mounted separately in a 

quadrocopter UAV, model md4-1000 (microdrones GmbH, Siegen, Germany, Figure 1A): (1) a 

conventional still visible-light camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo, 

Japan), which acquired 12-megapixel images in true Red-Green-Blue (RGB) colour with 8-bit 

radiometric resolution; and (2) a multispectral camera, model Tetracam mini-MCA-6 (Tetracam Inc., 

Chatsworth, CA, USA), which acquired 1.3-megapixel images composed of six individual digital 

channels arranged in a 2 × 3 array that can acquire images with either 8-bit or 10-bit radiometric 

resolution (Figure 1B). This camera has user configurable band pass filters (Andover Corporation, 

Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths at B (450 nm), G (530 

nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm).  
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Figure 1. (A) Unmanned aerial vehicle (UAV), model microdrone MD4-1000, with the visible-light camera 

attached, flying over the sunflower crop in the early season; (B) TetraCam Multispectral camera; and (C) 

Spectralon® panel placed in the middle of the field to calibrate the spectral data. 

Detailed information on the configuration of the UAV flights and specifications of the vehicle 

and the cameras can be found in (Torres-Sánchez et al. 2013). A set of aerial images was collected at 

intervals of 6-7 days on 29 May (date 1, 44 DAS), 4 June (date 2, 50 DAS) and 11 June (date 3, 57 DAS) 

to quantify multi-temporal discrimination of weeds and crop at the different growth stages described 

previously (Figure 2). On each date, flights for each camera were conducted at four different 

altitudes: 40, 60, 80 and 100 m. Each flight route was programmed into the UAV software so that the 

vehicle ascended vertically above a fixed point in the sunflower field. Once the UAV achieved each 

programmed altitude, a unique image was captured as the vehicle stopped. In total, twenty four 

images were taken and analysed, which were geo-referenced by identifying a set of ground target 

points located in the field by using a GPS and attributing their coordinates to the remote images by 

using the ENVI software (ENVI 4.4., Research Systems Inc., Boulder, CO, USA). 

A

C

B
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Figure 2. UAV images collected over the sunflower field at 40 m on three different dates in the early season 

(top) and associated on-ground photograph (bottom).  

In the course of the UAV flights, a barium sulphate standard Spectralon® panel (Labsphere Inc., 

North Sutton, NH, USA) of 0.45 × 0.45 m (Figure 1C) was placed in the middle of the field to correct 

the image data for the effects of shifting light conditions (e.g., due to changes in solar elevation or 

clouds) over time (several flight missions in three different dates). Digital images were spectrally 

corrected by applying an empirical linear relationship in which the equation coefficients were derived 

by fitting the digital numbers of the image pixels located in the Spectralon panel to the Spectralon 

ground values (Hunt, Jr. et al. 2010). The images taken with the visible-light camera were used 

directly after downloading to the computer, but images taken with the multispectral camera 

required preprocessing. This camera takes the images of each channel in raw format and stores them 

separately on six individual CF cards embedded in the camera. Therefore, an alignment process was 

needed to group the six single images into a multi-band image. The Tetracam PixelWrench 2 software 

(Tetracam Inc.) supplied with the multispectral camera was used to perform the alignment process. 

4.3. OBIA Algorithm 

The OBIA procedure designed for the weed mapping tasks was developed using the 

commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany). It was based 

on the weed mapping algorithm fully described in our previous work conducted in early-season 
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maize fields (Peña et al. 2013; Peña-Barragán et al. 2012). However, the procedure presented here is 

original and includes improvements and variations related to the special characteristics of sunflower 

crops.  

Figure 3. Flowchart of the OBIA procedure applied for crop-row classification and weed detection.  

The OBIA algorithm combined object-based features such as spectral values, position, orientation 

and hierarchical relationships among analysis levels; the algorithm recognised that the plants 

growing on the surface between crop rows were weed plants. Therefore, the algorithm was 

programmed to accurately detect the crop rows by the application of a dynamic and auto-adaptive 

classification process, and then classified the vegetation objects outside the crop rows as weeds. The 

flowchart of the detailed image analysis can be examined in (Peña et al. 2013); in this paper, only the 

main variations and upgrades are emphasised. The entire process is automatic and is composed of a 

sequence of routines described as follows (Figure 3):

(a). Field segmentation in sub-plots: The algorithm segmented the UAV images into small plots 

of a customised size to address the spatial and spectral variability of the crop field. In our 

case, sub-plots of 5 × 5 m were selected and sequentially analysed.  
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(b). Sub-plots segmentation in objects: The image sub-plots were sub-segmented using the 

multi-resolution algorithm implemented in eCognition to create multi-pixel objects 

representing the elements of the fields, i.e., crop and weed plants (vegetation objects) and 

soil background (bare soil objects). Segmentation is a bottom-up region-merging process 

based on band weights and on five parameters (scale, colour, shape, smoothness and 

compactness) defined by the operator. After visually testing several segmentation outputs, 

the selected values were 10, 0.9, 0.1, 0.5 and 0.5 for scale, colour, shape, smoothness and 

compactness, respectively. Within the range of spatial resolutions (a few centimetres) 

studied in this investigation, this segmentation setting was adequate for all the studied 

scenarios. However, this issue merits further investigation aiming to optimize the 

segmentation setting as affected by the crop pattern (e.g., crop row separation) and image 

spatial resolution (Torres-Sánchez et al. 2015). The resulting objects contained new 

contextual and morphological information (e.g., orientation, position, size, shape, and 

others) that were used in the next phases of the classification process.

(c). Vegetation objects discrimination: After segmentation, the first step in the classification 

process was to discriminate the vegetation objects from the bare soil objects. Two spectral 

indices were used: (1) the Excess Green index (ExG, Equation (1)) for the visible-light 

camera (Tellaeche et al. 2008; Woebbecke et al. 1995); and (2) the Normalised Difference 

Vegetation Index (NDVI, Equation (2)) for the multispectral camera (Rouse et al. 1973). The 

indices were calculated as follows: 

1) 

2) 

These indices enhance spectral differences of vegetation objects against the non-vegetation 

ones as previously reported by (Jorge Torres-Sánchez et al. 2013), while minimizing solar radiance 

and soil background effects (Jackson and Huete 1991). The determination of the optimum ExG and 

NDVI values for vegetation discrimination in the UAV images was conducted by an automatic and 

iterative threshold approach following the method of Otsu (Otsu 1979) and implemented in 

eCognition according to (Torres-Sánchez et al. 2015): 

(d). Crop-row classification: Once the vegetation objects were discriminated, the crop-row 

structure was classified by following three steps: (1) estimation of the crop-row 

orientation; (2) image gridding based on stripes following the crop-row orientation; and (3) 
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crop-row classification. First, crop-row orientation was determined by an iterative process 

in which the image was repeatedly segmented in stripes with different angles (from 0° to 

180°, with 1° of increase ratio), with the selected orientation the one in which the stripes 

showed a higher percentage of vegetation objects. Next, a new segmentation level (i.e., 

upper level) was created above the previous multi-resolution one (i.e., lower level) in which 

the image was segmented to create a mesh of stripes with the same direction as the 

selected crop-row orientation angle. Finally, the stripe in the upper segmentation level 

with the higher percentage of vegetation objects in the lower segmentation level were 

classified as crop rows, following the criteria described in (Guerrero et al. 2013). In this 

process, after a stripe was classified as a crop-row, the separation distance between rows 

(0.7 m in sunflower) was used to mask the neighbouring stripes within this distance, which 

avoided classifying areas with high weed infestation as crop rows.

(e). Weed and crop discrimination: Once the crop-rows were classified, the remaining stripes 

were classified as crop-row buffer (strings in contact with the crop rows) and non-crop area 

in the upper segmentation level. Next, the hierarchical relationship between the upper and 

the lower segmentation levels was used to execute the discrimination of crop and weeds. 

The vegetation objects (in the lower segmentation level) that were located either under 

the crop rows or under the non-crop area (in the upper segmentation level) were classified 

either as sunflower or as weeds, respectively. The remaining vegetation objects located 

under the buffer area were classified following a criterion of minimum spectral distance, 

i.e., an unclassified vegetation object was assigned to the sunflower or weed class 

depending on its higher degree of spectral similarity to its surrounding sunflower or weed 

objects, respectively. 

(f). Weed coverage assessment: A vector file containing 30 geo-referenced sampling frames, 1 × 1 

m in size, was overlapped in the classified image to calculate the relative area 

corresponding to each class, i.e., sunflower, weeds and bare soil, in every frame. Weed 

coverage was determined as the percentage of pixels classified as weed per unit of ground 

surface. Information derived from these frames was used for validation purposes, as 

explained in the next section. 

4.4. Evaluation of OBIA Algorithm Performance 

The performance of the OBIA algorithm in each case study (each camera, flight altitude and 

date) was evaluated by visually comparing the results obtained for crop-row identification and weed 

discrimination with real data observed in 30 ground-truth 1 × 1 m2 sampling frames in the field. 
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These sampling areas were regularly distributed in the study area and were representative of the 

weed infestation observed in the field and included a number of sampling frames free of weeds. 

Ground-truth observations were derived from vertical remote images collected with a UAV flight at 

10 m. For this purpose, the UAV equipped with the visible-light camera was programmed to fly 

continuously taking overlapped images every second (80% forward-lap and 30% side-lap). The set of 

UAV images were mosaicked using Agisoft Photoscan Professional Edition (Agisoft LLC, St. 

Petersburg, Russia) software following the protocol described in (Gómez-Candón et al. 2014; Torres-

Sánchez et al. 2013). Because of the low flight altitude, the mosaicked image had 0.38 cm/pixel of 

spatial resolution, which made it possible to visually identify the individual plants in every reference 

frame and thus conduct a manual classification of the ground-truth data for crop plants, weeds and 

bare-soil (Figure 4). By comparing observed data and classification outputs in each case study, the 

OBIA algorithm was evaluated by quantifying the number of correct frames, i.e., those sampling 

frames in which all the weed plants were correctly attributed to weed objects (Figure 4-1-C). There is 

no 4-1, please confirm Alternatively, incorrect frames (e.g., crop plants classified as weed objects, 

weed plants classified as bare soil objects, etc.) were also labelled as three different types: (1) 

underestimated, i.e., weed-infested frames in which some weed plants were detected but other 

weed plants remained undetected by the OBIA algorithm (Figure 4-2-C); (2) false negative, i.e., weed-

infested frames in which no weeds were detected (Figure 4-3-C); and (3) false positive, i.e., frames in 

which weeds were overestimated (e.g., crop plants or bare soil elements classified as weed objects) 

(Figure 4-4-C).  

5. RESULTS AND DISCUSSION 

5.1. Image Spatial Resolution and Covered Area As Affected by Flight Altitude 

The image spatial resolution captured by each camera and the area covered by each individual 

image at different UAV flight altitudes are shown in Table 1. The visible-light and the multispectral 

cameras captured images with pixel sizes ranging from 1.52 cm to 3.81 cm and from 2.16 cm to 5.41 

cm at flight altitudes of 40 and 100 m, respectively (Figure 5), as determined by a proportional 

relationship between sensor resolution and flight altitude. The ultra-high spatial resolution of the 

sensors is one of the crucial features for weed mapping early in the season when crop and weeds are 

at a young phenological stage (e.g., four true leaves). 
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Figure 4. Examples of four sampling frames showing: (1) correct classification; (2) underestimation of weeds; (3) 

false negative errors (i.e., no detection of weeds); and (4) false positive errors (i.e., overestimation of weeds) in 

three scenarios: (A) On-ground photographs; (B) manual classification of observed data; and (C) image 

classification performed by the OBIA algorithm. Clearer original image 

Table 1. Image spatial resolution (pixel size) and area covered as affected by flight altitude and type of camera. 

Flight Altitude Pixel Size (cm) Covered Area (ha)
Visible-Light Camera Multispectral Camera Visible-Light Camera Multispectral Camera

40 m 1.52 2.16 0.28 0.06
60 m 2.28 3.27 0.63 0.14
80 m 3.04 4.33 1.13 0.25

100 m 3.81 5.41 1.77 0.38

1-A 2-A 3-A 4-A 

1-B 2-B 3-B 4-B 

1-C 2-C 3-C 4-C 
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Figure 5. Details of the image spatial resolution captured by the visible-light camera and the multispectral 

camera at: (A) 40 m altitude; and (B) 100 m altitude.  

In general, at least four pixels are required to detect the smallest objects within an image 

(Hengl 2006). Accordingly, if the discrimination of individual weed plants is the objective, the pixel 

size should be approximately 1–4 cm, which corresponds to flight altitudes of 40 to 100 m for the 

visible-light camera and altitudes of 40 to 60 m for the multispectral camera. However, if the 

objective is weed patch detection, the pixel size of remote images could be 5 cm or even greater, 

which corresponds to a flight altitude of 100 m or higher for both cameras. One of the most relevant 

parameters was the area overlap because of its strong implications for the configuration of the 

optimum flight mission. This parameter is directly related to the flight altitude and the type of 

camera. At the flight altitudes in this study, each remote image captured with the visible-light camera 

covered approximately 4.6 times more surface area than the multispectral camera, e.g., increasing 

from 0.06 ha to 0.28 ha at 40 m and from 0.38 to 1.77 ha at 100 m, respectively (Figure 6). 

1-A 1-B 

2-A 2-B 
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Figure 6. Individual UAV images collected with the multispectral (1) and the visible-light (2) cameras at: 40 m (A); 

and 100 m (B) altitude. The yellow squares serve to compare the area covered by the images from each camera 

at both flight altitudes. The sunlight effect (light spot) observed in 1-B and 2-B were minimized after applying 

vegetation indices (see Section 4.3).  

The differences in pixel size and covered area were because of the technical specifications of 

each camera, since the camera focal length affects both parameters, whereas the camera sensor size 

only affects the image’s pixel size. Accordingly, when the user defines the flight program, it is 

necessary to balance the flight project to keep the image spatial and spectral quality steady, as the 

area covered is considered. Two main conditions must accounted for: (1) to provide remote images 

with a fine enough spatial and spectral resolution to guarantee weed discrimination at early growth 

stages; and (2) to cover as much surface area as possible to optimise the operation length of the UAV 

flight. 

5.2. Accuracy Assessment on Classification of Crop-Rows 

The OBIA algorithm identified and counted the number of sunflower rows with 100% accuracy 

in all the images, independent of the camera type, date or flight altitude (Figure 7). This 

demonstrated the efficiency and robustness of the procedure developed for crop-row classification 

in which the stripes with the higher percentage of vegetation objects were selected as seeds for 

crop-row identification. This has strong implications for the success of the next steps in the OBIA 

procedure designed for weed discrimination, which should be focused on minimising potential errors 

in detecting the vegetation objects (weeds) located in the area between the sunflower rows. 

1-A 1-B 

2-A 2-B 
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Figure 7. Image classified in weeds (red), sunflower crop rows (green) and bare soil (brown) using an UAV flying 

at 40 m altitude with: (A) visible-light camera (ExG index); and (B) multispectral camera (NDVI index).  

5.3. Weed Discrimination As Affected by Camera, Date and Flight Altitude 

Accuracy assessment on weed discrimination attained from analyses of the UAV images 

captured by each camera on each flight (four flight altitudes and three flight dates) is shown in Table 

2. A ground-truth frame was classified as correct if all the weed plants within the frame were 

correctly attributed to weed objects. Otherwise, the frame was labelled as either underestimated, 

false negative or false positive according to the error observed (see Section 2.4). On the first date (44 

DAS, when crop and weed were at the four true leaf phenological stage), 71% classification accuracy 

for both cameras was obtained for discrimination of weeds at the lowest altitude (40 m). However, at 

higher flight altitudes, the multispectral camera had higher accuracy (from 62% at 60 m to 43% at 

100 m) than the visible-light camera (43% and 19%, respectively). From the analysis of the errors, 

most errors at 40, 60 and 80 m were attributed to false-negative errors, i.e., misclassification was 

produced by non-detection of weeds (Figure 4-3-C) keep consistent with that labelled in Figure 4 or, 

of minor importance, because of the underestimation of weed coverage (Figure 4-2-C). At 100 m, the 

trend was maintained in images captured with the multispectral camera but not with the images 

captured by the visible-light camera because, in the latter case, most of the errors were due to false 

positives (47%), which was attributed to classification of sunflowers as weeds (Figure 4-4-C). This 

source of error gains importance at higher altitudes because of the spectral mixture between 

sunflowers and bare soil elements that occurred in the edges of the crop-rows. Because of a loss of 

spatial resolution, spectral information of the row edge pixels is a mix of sunflower (high ExG and NDVI 

values) and bare soil (low ExG and NDVI values) spectral response, which is similar to the weed spectral 

response in some cases (mainly in the visible-light images) and, as a result, it causes over-classification 

of weeds in the crop-row edges. On the first date, the algorithm for weed detection performed 

better for imagery captured with the multispectral camera at any of the flight altitudes even with its 

lower spatial resolution, compared with the visible-light imagery. This indicated that the near-

A B
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infrared spectral information used by the multispectral camera is more suitable for this task and 

compensated for its lower spatial resolution (Table 1). From an agronomic point of view, the false 

positive errors (overestimation of weeds) are more acceptable than false negative errors (non-

detection of weeds) for generating the weed maps in practice, assuming that farmers would choose 

to treat weed-free areas rather than risk allowing weeds to go untreated (Gibson et al. 2004). 

However, both cameras were fully effective (100% accuracy) at 40 and 60 m in the classification of 

the weed-free areas, which drastically reduced the potential impact of an overestimation of the 

weeds at the field scale. The accuracy was maintained by the images captured at 80 and 100 m with 

the multispectral camera but not with the visible-light images (44% and 33% accuracy, respectively). 

On the second date (50 DAS, when crop and weeds were at the five-six true leaf phenological 

stage), the weed detection procedure found higher classification accuracy for both cameras, resulting 

in 77% and 91% of correct weed-infested frames at 40 m for the visible-light and the multispectral 

cameras, respectively. Similar to results from the previous date, the classification accuracy decreased 

in all the images with increasing altitude. The majority of errors were attributed to no-detection 

(false negative) and underestimation of weeds, although the highest value was the false positive 

error (41%) from the visible-light images captured at 100 m because of incorrect classification of the 

crop-row edges as weeds (Figure 4-4-C). In the weed-free frames, the images captured with the 

multispectral camera were 100% accurate at 40, 60 and 80 m, although the OBIA algorithm slightly 

decreased its accuracy to 88% at 100. In the visible-light images, the results followed the trend of the 

first date, although the images had lower accuracy at 40 and 60 m (88%) and higher accuracy at 80 m 

(63%) and 100 m (37%) in comparison with the previous date. As an example, the weed maps 

generated on the second date from the images captured by both sensors at 40 m (best scenario) are 

shown in the Figure 7. Weed coverage was found to be 1.25% of the field area with the NDVI images 

(multispectral camera) and 0.98% with the ExG images (visible-light camera). 

On the third date (57 DAS, when crop and weeds were at the seven-eight true leaf 

phenological stage), lower accuracy of weed detection was found, in general, than on the previous 

dates for the majority of the images and flight altitudes analysed, with the exception of the visible-

light images captured at 60 and 80 m. For example, the accuracy of weed detection in the images 

captured at 40 m was 3% and 9% lower with the visible-light camera (ExG images) and 11% and 31% 

lower with the multispectral camera (NDVI images) in comparison with the results from date 1 and 2, 

respectively. On this date (57 DAS), the highest percentage of errors was mainly from non-detection 

of weeds (false negative) in both types of images, although primarily in the images captured with the 

multispectral camera. Although the weed plants were bigger on this date and their discrimination 

supposedly easier, weeds were masked by sunflower shadows, which increased the degree of weed 
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misclassification. False positive errors were also an important source of confusion in the visible-light 

images captured at 80 and 100 m, occurring in 36% and 32% of the weed-infested frames, respectively, 

and in 37% of the weed-free frames at both altitudes. As on the previous dates, performance of the 

OBIA algorithm in the weed-free zones was very satisfactory with the multispectral camera at any 

altitude and with the visible-light camera at 40 and 60 m. 

After the importance of efficient classification of crop-rows, spectral information derived from 

ExG (in the visible-light images) and NDVI (in the images captured with the multispectral camera) 

indices could initially be considered the primary factor affecting weed identification. However, image 

spatial resolution (or, equally, flight altitude) and the date of the study (i.e., crop and weed 

phenological stage) were also key factors in the accuracy of the classification, mainly in the weed-

infested zones (Table 2). According to the results obtained for the weed-infested frames using UAV 

images captured at 40 m with either of the cameras, the best time for weed detection in early-

season sunflower fields was approximately 52 days after sowing (date 2). At this altitude, our results 

showed that the images captured before this date were more suitable for weed detection than the 

images captured later in the growing season. However, the best time for weed detection differed for 

each type of image at higher flight altitudes. If the visible-light camera was used at 60 or 80 m, the 

best results were obtained for date 3 (57 DAS) because this camera was ineffective on the earliest 

dates due to the small size of the weed plants and some degree of confusion between their bright 

leaves and the bare background soil. This problem was minor with the multispectral camera because 

of the near-infrared information provided in these images, and the results were slightly better on date 

1 (44 DAS) than on date 3 at 60, 80 and 100 m. 

Considering both weed-infested and weed-free zones, the accuracy obtained with the 

multispectral camera (by using NDVI images) was 14%, 18% and 5% higher than the accuracy 

achieved with the visible-light camera (by using ExG images) on dates 1, 2 and 3, respectively. These 

results have relevant implications for choosing the most appropriate camera because the visible-light 

camera is a low-cost sensor, whereas the multispectral camera is a costly sensor. Moreover, the 

visible-light camera generates higher spatial resolution imagery, and its images cover a larger area of 

study in comparison with the multispectral camera. The errors observed in the ExG images were 

mainly due to false negative (i.e., no-detection of weeds); the NDVI images detected weed plants in a 

higher number of frames, but weed coverage was underestimated in some cases. The latter errors 

could be more acceptable to the farmers because they usually prefer a conservative option and avoid 

leaving weed patches untreated. Importantly, the OBIA algorithm successfully detected 100% of the 

crop rows and almost all the weed-free frames in the majority of the cases. This result is essential for 

providing accurate information to the decision-making system and to help the farmers select, with 
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near 100% confidence, the weed-free areas where the site-specific weed control equipment does not 

need to go. This is very relevant not only for reducing herbicide applications but for optimising 

energy (fuel) and field operating time and expense. 

6. CONCLUSIONS 

Until now, obtaining weed infestation maps early in the growing season has been a great 

challenge because of the reduced size of the weed and crop plants and their spectral similarity at an 

early phenological stage. This challenge has been overcome in this investigation by the combined use 

of an Unmanned Aerial Vehicle (UAV), remote images captured with cameras at visible and near-

infrared spectral ranges, and application of object-based image analysis (OBIA) techniques. With both 

cameras, the highest accuracy in weed detection was achieved with the images captured at 40 m on 

date 2 (50 days after sowing, DAS) when weeds and sunflower plants had 5-6 true leaves (code 15-16, 

BBCH scale). On this date, up to 91% accuracy was attained with the images captured by the 

multispectral camera. At 40 m, the images captured sooner (date 1) reported slightly better results 

than the images captured later (date 3). However, from 60 m altitude and higher, the images 

captured with the visible-light camera reported notably better results on date 3 because of the larger 

size of the weed plants and less confusion distinguishing between crop-row edges and weeds. The 

source of errors was different for each scenario studied. In general, the errors in the weed-infested 

zones were mostly attributed to no-detection or underestimation of weeds, whereas the errors in 

the weed-free zones were due to the wrong classification of the crop-row edges as weeds. This latter 

type of error was more accentuated in the images captured at higher altitudes due to their lower 

spatial resolution that blurred spectral detection. 

Extrapolating our results to practical use for farmers and prior to performing an UAV flight 

operation, it is recommended that several factors be considered: (1) camera characteristics and price; 

(2) area covered by each flight; (3) degree of accuracy needed; and (4) agronomic objective. 

Therefore, the information reported in this article might be very useful for commercial companies 

that offer UAV services to farmers or to farmers who own their UAV and must decide on the type of 

camera (i.e., spatial and spectral sensor resolution) to be used and the optimal flight altitude needed 

to generate a suitable weed map of the sunflower field early in the season to apply site-specific weed 

management operations. 
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CAPÍTULO 6 

EARLY SEASON WEED MAPPING IN 

SUNFLOWER USING UAV TECHNOLOGY: 

VARIABILITY OF HERBICIDE TREATMENT 

MAPS AGAINST WEED THRESHOLDS 

López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., Castro, A. I. de, Mesas-Carrascosa, F.-J., & 
Peña, J.-M. (2015). Early season weed mapping in sunflower using UAV technology: variability of 
herbicide treatment maps against weed thresholds. Precision Agriculture, 17(2), 183–199. 
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1. RESUMEN 

El control localizado de malas hierbas es definido como la aplicación adaptada de tratamientos 

de control sólo donde se encuentran las malas hierbas, usando el herbicida adecuado a la 

emergencia de malas hierbas. El objetivo de este estudio fue la generación de mapas de infestación 

de plántulas de malas hierbas en dos campos de girasol median el análisis de imágenes aéreas 

solapadas del espectro visible e infrarrojo cercano tomadas por un UAV a 30 y 60 m de altura. Las 

principales tareas se centraron en la configuración y evaluación del UAV y sus sensores para la toma 

de imágenes y el mosaicado, así como en el desarrollo de un procedimiento automático y robusto de 

análisis de imagen para la cartografía de plántulas de malas hierbas con el objetivo de diseñar un 

programa de control localizado de malas hierbas. La estrategia de control se basó en siete umbrales 

de tratamiento con incrementos del 2,5%, desde un umbral del 0% (el herbicida debe ser aplicado en 

cuanto haya presencia de malas hierbas) hasta el 15% (se aplica si la cobertura de malas hierbas es 

mayor del 15%). Como un primer paso del análisis de imagen, las hileras de girasol fueron 

correctamente alineadas en el orto-mosaico, lo que permitió un análisis de imagen preciso usando 

OBIA. El algoritmo OBIA desarrollado para la cartografía de malas hierbas en fase temprana con 

imágenes mosaicadas clasificó las hileras de girasol con un 100% de precisión en ambos campos, a 

todas las alturas de vuelo y con los dos sensores, indicando la robustez del algoritmo. En cuanto a la 

discriminación de malas hierbas, altas precisiones fueron observadas usando la cámara 

multiespectral a cualquier altura de vuelo, con la precisión más alta (casi 100%) siendo registrada 

para el umbral de tratamiento del 15%, aunque se obtuvieron resultados satisfactorios para los 

umbrales del 2,5% y 5%, con precisiones mayores del 85% para ambos campos. Las menores 

precisiones (entre el 50 y 60%) fueron conseguidas con la cámara visible a todas las alturas y para el 

umbral del 0%. Los ahorros en herbicida fueron relevantes en ambos campos, aunque fueron 

mayores en el campo 2 debido a su menor infestación. Estos ahorros variaron de acuerdo a los 

diferentes escenarios estudiados. Por ejemplo, en el campo 2 a 30 m de altura y usando la cámara 

multiespectral, un rango del 23-3% del campo podría ser tratado para umbrales del 0 al 15%. El 

procedimiento OBIA calculó múltiples datos que permitieron la estimación de las necesidades de 

herbicida para un control localizado y a tiempo de las plántulas de malas hierbas. 

2. ABSTRACT   

Site-specific weed management is defined as the application of customised control treatments 

only where weeds are located within the crop-field by using adequate herbicide according to weed 

emergence. The aim of the study was to generate georeferenced weed seedling infestation maps in 

two sunflower fields by analysing overlapping aerial images of the visible and near-infrared spectrum 
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(using visible or multi-spectral cameras) collected by an unmanned aerial vehicle (UAV) flying at 30 

and 60 m altitudes. The main tasks focused on the configuration and evaluation of the UAV and its 

sensors for image acquisition and ortho-mosaicking, as well as the development of an automatic and 

robust image analysis procedure for weed seedling mapping used to design a site-specific weed 

management program. The control strategy was based on seven weed thresholds with 2.5 steps of 

increasing ratio from 0% (herbicide must be applied just when there is presence or absence of weed) 

to 15% (herbicide applied when weed coverage > 15%). As a first step of the imagery analysis, 

sunflower rows were correctly matched to the ortho-mosaicked imagery, which allowed accurate 

image analysis using object-based image analysis (OBIA methods). The OBIA algorithm developed for 

weed seedling mapping with ortho-mosaicked imagery successfully classified the sunflower-rows 

with 100% accuracy in both fields for all flight altitudes and camera types, indicating the 

computational and analytical robustness of OBIA. Regarding weed discrimination, high accuracies 

were observed using the multi-spectral camera at any flight altitude, with the highest (approximately 

100%) being those recorded for the 15% weed threshold, although satisfactory results from 2.5% and 

5% thresholds were also observed, with accuracies higher than 85% for both field 1 and field 2. The 

lowest accuracies (ranging from 50 to 60%) were achieved with the visible camera at all flight 

altitudes and 0% weed threshold. Herbicide savings were relevant in both fields, although they were 

higher in field 2 due to less weed infestation. These herbicide savings varied according to the 

different scenarios studied. For example, in field 2 and at 30 m flight altitude and using the multi-

spectral camera, a range of 23 to 3% of the field (i.e., 77 and 97% of area) could be treated for 0 to 

15% weed thresholds. The OBIA procedure computed multiple data which permitted calculation of 

herbicide requirements for timely and site-specific post-emergence weed seedling management. 

3. INTRODUCTION 

Efficient and timely post-emergence weed control is a critical task in crop production because 

inappropriate weed management tends to reduce yield and increase the negative impacts on the 

environment. Inappropriate weed management is often related to incorrect herbicide use resulting 

from three main problems. The first is applying herbicides when weeds are not in the suitable 

phenological stage (generally when weeds have 4-6 true leaves, although this depends on specific 

weed species or group of species), the second is applying herbicides without considering any weed 

threshold (i.e., the weed infestation level above which a treatment is required (Swanton et al. 1999)), 

the third is broadcasting herbicides over the entire field, even when weed-free areas are present due 

to the usual weed patchy distribution (Jurado-Expósito et al. 2003,  Jurado-Expósito et al. 2005). The 

first problem is usually addressed using the expert knowledge of farmers. The other two problems 

can be overcome by developing site-specific weed management (SSWM) strategies according to 
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weed thresholds (Longchamps et al. 2014). These strategies may consist of both a single herbicide 

treatment to weed patches where a unique group of weeds is present (for example either grass or 

broadleaved weeds), or use of several herbicides according to the presence of different weed species 

or group composition, such as grass, broadleaved weeds or a specific problematic weed such as 

Orobanche-broomrape, which can be a serious problem in sunflower production (García-Torres et al. 

1994; Molinero-Ruiz et al. 2014). Sunflower (Helianthus annuus L.) is the most important annual 

oilseed crop in southern Europe and the Black Sea region, with over 5 M ha grown annually (FAO 

2015), of which 0.8 M ha are in Spain (MAGRAMA 2014). Weed control operations (either chemical 

or physical) using large agricultural machinery account for a significant proportion of production 

costs, create various agronomic problems (soil compaction and erosion) and represent a risk for 

environmental pollution. In this context, there is a demand for developing a timely, post-emergence, 

site-specific management program in order to reduce the issues associated with current weed 

control practices in sunflower and to comply with the European legislation and concerns (Regulation 

EC No 1107/2009; Directive 2009/128/EC; Horizon2020). 

To achieve these goals, it is necessary to generate the weed cover maps, which allow the 

translation of the spatial distribution of the weed infestation into site-specific herbicide treatment 

maps. As reported earlier, one of the main variables considered in the weed control decision process 

in sunflower is weed threshold, which is based on weed density or level of infestation (Castro-

Tendero and García-Torres 1995; Carranza et al. 1995). If these weed cover or weed infestation maps 

are built using a grid design, a weed threshold can be derived, which is the percentage of weed cover 

in every grid, above which a treatment is required. This threshold could be the baseline to generate 

the herbicide treatment maps. Remote sensing, together with proximal sensing, are now two of the 

principal sources of data to monitor weeds in a cost effective way. There are previous studies that 

have investigated weed detection and mapping in crops at late growth stages, e.g., flowering, using 

imagery from piloted airborne or satellite able to register visible and near-infrared information 

(Gutiérrez-Peña et al. 2008; de Castro et al. 2012; de Castro et al. 2013). However, the images from 

these platforms have limited ability to detect weeds at the seedling stage due to their low spatial 

resolution. Other remote platforms, on the other hand, can generate the high spatial resolution 

imagery (pixel size ≤ 0.05 m) needed to map weeds at very early phenological stages, which can then 

be used to develop efficient post-emergence controls. Recent research emphasises the suitability of 

unmanned aerial vehicles (UAV) for this purpose (López-Granados 2011; Zhang and Kovacs 2012). A 

key component of a UAV is the versatility of the configuration of onboard sensors, flight altitude, 

flight planning, etc. The required parameters and their implications for the potential use of UAV in 

early weed detection have been reported by Torres-Sánchez et al. (2013). The main advantages of 

using UAV is that they can carry (even simultaneously) different sensors to record reflected energy at 
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diverse spectral ranges according to each detection objective, fly at different altitudes to adjust the 

desired high spatial resolution and be programmed on demand at critical stages of crop growth. This 

is crucial when detecting weeds in crops for early post-emergence SSWM when crops and weeds are 

at the same early phenological stage and they show spectral and visual similarities.  

As a result of collecting images with a very high spatial resolution, UAV images taken at low 

altitude cannot cover the entire study area. This causes the need to take a sequence of a percentage 

of forward (lateral) and side (longitudinal) overlapped imagery, which acquire a number of images 

per hectare depending on the flight altitude. These individual images must then be stitched together 

and ortho-rectified to create an accurately geo-referenced ortho-mosaicked image of the entire plot 

for further analysis and classification. Image mosaicking is a well-known task for integrating spatial 

data to assess and monitor disasters (Li et al. 2011), map archaeological sites (Lambers et al. 2007) or 

conduct high quality cadastral and urban planning (Haarbrink and Eisenbeiss 2008) using local 

invariant features or ground control points to perform the aero-triangulation. However, the splicing 

image used to generate an ortho-image (also named ortho-mosaicked image) of herbaceous crops at 

early stages of phenological development presents serious difficulties due to the high repetitive 

pattern of these fields. In a recent work, our research group discussed a detailed procedure to 

produce accurate ortho-imagery with spatial resolutions from 0.0074 to 0.0247 m and representing 

the entire area of wheat fields (rows 0.15 m apart) by using UAV flying at low altitudes (Gómez-

Candón et al. 2014). This work concluded that one of the crucial parameters for generating ortho-

mosaicked imagery when mapping row crop environments is crop row alignment on both sides of the 

overlapped images. This issue was addressed and crop line continuity was preserved because overall 

spatial errors less than twice the spatial resolution were obtained. This methodology was very useful 

in the development of the objectives herein presented. 

One of the intrinsic problems when processing very high spectral resolution imagery is that 

individual pixels do not capture the distinctiveness of the targets investigated, which generates a 

high intra-class spectral variability and, consequently, resulting in difficulties to achieve statistical 

separation. Segmentation is the process of dividing a digital image into multiple regions according to 

the proposed objective. For example, to discriminate weeds in a crop using UAV imagery, the 

segmentation would consist of multi-pixel regions defined by crop, weeds and bare soil. That is, 

throughout the segmentation, spatially adjacent and spectrally homogeneous pixels would be 

grouped to create units named objects that contain more information than individual pixels, allowing 

for a more meaningful interpretation. This is the main idea behind the steps of the OBIA (object-

based-image-analysis) procedure: 1) to automatically segment an image into objects, 2) to combine 

their spectral, contextual, morphological and hierarchical information, and 3) to classify the image by 
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using them as the minimum information units (Blaschke, 2010). Peña et al. (2013) developed an OBIA 

algorithm using single UAV imagery (not ortho-mosaicked imagery) for early detection of weeds in 

maize  

As previously described, UAV ortho-mosaics are becoming an important tool for the 

development of site-specific weed prescription strategies because they can offer information on the 

entire study area and can detect small plants (crop and weeds) at early growth stages, which are not 

detected using other kinds of remote platforms with coarse spatial resolution (like satellite or 

conventional aerial platforms with which objects smaller than 0.20 m cannot be detected). 

Considering that highly accurate mosaics have been obtained working in wheat fields (Gómez-

Candón et al. 2014), generation of ortho-mosaicked imagery for sunflower fields with 0.70 m row 

spacing seems to be a reasonable starting point for developing an early SSWM program, in which the 

relative location of weeds in proximity to the crop rows is a hypothesis for discriminating and 

mapping weed cover. Thus, the objectives of this work were to: 1) assess the optimal planning of 

UAV flights with respect to flight altitude and sensor type (visible vs visible+Near-infrared cameras) 

for generating accurate ortho-imagery, 2) design and evaluate an OBIA procedure for mapping bare 

soil, crop-rows, weed-patches and weed-free zones using the ortho-mosaicked imagery, and 3) 

simulate several field-based scenarios according to different weed thresholds to evaluate the 

sections of the sunflower fields that should be and not be managed with herbicide. 

4. MATERIALS AND METHODS  

4.1. Sites  

The study sites were two commercial sunflower fields with flat ground (average slope <1%) 

situated at Monclova Farm, in Seville province (southern Spain, central co-ordinates datum WGS84: 

37.528N and 5.315W for field 1, and 37.524N, 5.318W for field 2). The sunflower crops were sown on 

March 25th, 2013, at 6 kg ha-1 in rows 0.70 m apart, and emergence of the sunflower plants started 

15 days after sowing. The sunflower fields had an area of approximately 1 ha each, and were 

naturally infested by the broadleaved weeds Amaranthus blitoides S. Wats (pigweed), Sinapis 

arvensis L. (mustard) and Convolvulus arvensis L. (bindweed), as well as Chenopodium album L. 

(lambsquarters) in field 2. All these weed species can be controlled by the same type of herbicide. 

Weed and crop plants were in the principal stage 1 (leaf development, four-six true leaves, codes 14-

16) from the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) extended 

scale (Meier 2001).  
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4.2. UAV flights: cameras and altitudes  

The co-ordinates of each corner of the experimental fields were collected with GPS for 

planning the flight route. Then, each flight route was programmed into the UAV software to allow 

the UAV to attain every programmed altitude and required degree of image overlap. This imagery 

was collected with two different cameras mounted separately in a quadrocopter UAV, model md4-

1000 (microdrones GmbH, Siegen, Germany, Fig. 1) on May 7th 2013 at two different altitudes: 30 

and 60 m. A sequence of 30% side-lap and 60% forward-lap imagery was collected to cover the entire 

area of the experimental sunflower fields corresponding to each flight mission cameras and altitudes 

(Fig. 2). One of the cameras used was a low-cost digital visible camera, model Olympus PEN E-PM1 

(Olympus Corporation, Tokyo, Japan), which acquires 12-megapixel images in true Red-Green-Blue 

(RGB) colour with 8-bit radiometric resolution. The other sensor was a multi-spectral camera, model 

Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA), which acquires 1.3-megapixel images 

composed of six individual digital channels arranged in a 2×3 array that can acquire images with 

either 8-bit or 10-bit radiometric resolution. This camera has user configurable band pass filters 

(Andover Corporation, Salem, NH, USA) of 10-nm full-width at half maximum and centre wavelengths 

in the B (450 nm), G (530 nm), R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm) 

spectral regions. Detailed information about the configuration of the UAV flights and specifications of 

the vehicle and the cameras can be found in Torres-Sánchez et al. (2013). The images taken with the 

visible camera were used directly after downloading to the computer, but those taken with the 

multi-spectral camera required pre-processing. This multi-spectral sensor acquires images in each 

channel in raw format and stores them separately on six individual CF cards embedded in the 

camera. Therefore, an alignment process was needed to group, in a single file, the six images taken 

at each waypoint. The Tetracam PixelWrench 2 software (Tetracam Inc., Chatsworth, CA, USA) 

supplied with the multi-spectral camera was used to perform the alignment process. 

In the course of the UAV flights, a barium sulphate standard spectralon® panel (Labsphere Inc., 

North Sutton, NH, USA) of 1 x 1 m dimension was also placed in the middle of the fields to calibrate 

the spectral data (Fig. 3). Digital images captured in each camera spectral channel were spectrally 

corrected by applying an empirical linear relationship (Hunt, Jr. et al. 2010). Equation coefficients 

were derived by fitting digital numbers of the multi-spectral images located in the spectralon panel 

to the spectralon ground values.
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Figure 1. Microdrone MD4-1000 with the multispectral camera (6 channels) embedded flying over one the 

sunflower experimental fields.

Figure. 2. a) Screen shot of the set of overlapped images taken with UAV flying at 30 m altitude equipped with 

the still visible camera in Field 1 (1 ha surface); b) Resulting orthomosaicked imagery.
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Figure 3. a) Partial view of the ortho-mosaicked imagery at 30 m altitude (sunflower field 2), showing the 

sunflower rows, the spectralon (white square placed between two sunflower rows at the bottom-left), some 

patches of weed infestation and some of the 49 1x1 m square frame; b) Detail of vector file created for every 1 

m x 1 m square frames (yellow); c) Detail the vector file created for the sunflower crop (green) and weed (violet) 

classes in one the 49 square frames.

4.3. Image mosaicking 

Image mosaicking is an important task prior to image analysis and consists of the combination 

of the sequence of overlapped imagery by applying a process of mosaicking using Agisoft PhotoScan 

Professional Edition (Agisoft LLC, St. Petersburg, Russia). On the day of the UAV flights, a systematic 

on-ground sampling procedure was conducted, which consisted of placing 49 1x1 m sampling areas, 

or frames, regularly distributed throughout the two experimental fields according to a representative 

distribution of weed infestation in the experimental fields (Fig. 3). All the frames were georeferenced 

and, of the 49 frames, 12 were utilised as artificial terrestrial targets in order to perform the imagery 

ortho-rectification and mosaicking process. All of the 49 frames were also employed later in the 

validation of the OBIA procedure for the weed discrimination, as explained in the evaluation of the 

OBIA algorithm performance section. The mosaicking process had three principal steps for each field: 

1) image alignment, i.e., the software searches for common points in the images and matches them, 

in addition to finding the position of the camera for each image and refining camera calibration 

parameters, 2) construction of image geometry based on the estimated camera positions and images 

themselves to produce a 3D polygon mesh representing the overflow areas was built by PhotoScan, 

and 3) projection of individual images once the geometry was built for ortho-photo generation. The 

resultant ortho-mosaicked images must show a high-quality landscape metric and an accurate 
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sunflower row matching between consecutive images in order to guarantee good performance of the 

subsequent segmentation and classification analyses. 

4.4. OBIA algorithm  

The OBIA procedure designed for the weed mapping objectives was developed using the 

commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany). This OBIA 

procedure was based on an algorithm for weed mapping in early-season maize fields fully described 

in previous work by our research group (Peña et al. 2013), though that work was conducted using 

single imagery, whereas the procedure presented herein includes some relevant variations and 

upgrades related to the unique characteristics of sunflower crops. The OBIA algorithm combined 

object-based features such as spectral values, position, orientation and hierarchical relationships 

among analysis levels. The algorithm was based on the position of crop and weed plants relative to 

the crop rows, that is, every plant not located on the crop line was considered a weed. Therefore, the 

algorithm was programmed to accurately recognise and detect the crop rows by the application of a 

dynamic and auto-adaptive classification process, and then classified the vegetation objects outside 

the rows as weeds. The detailed image analysis workflow is described by Peña et al. (2013) and only 

the variations and improvements are described in the following steps:

a) Field segmentation in to sub-parcels: ortho-mosaicked images taken with every camera and 

flight altitude were segmented into small parcels whose size is user-configurable and, in this case, 

was 5×5 m. Every sub-parcel was analysed individually to address the spatial and spectral variability 

of the crop.  

b) Sub-parcel segmentation in to objects: the sub-parcel images were sub-segmented using a 

multi-resolution algorithm to create homogeneous multi-pixel objects corresponding to two classes: 

vegetation (crop and weeds) and non-vegetation (bare soil) objects. Since these objects come from 

the merger of spectrally and spatially homogeneous pixels, they contain new information that was 

used in the next phases of the OBIA procedure. In this study, this new information corresponded to 

1, 10, 0.6, 0.4, 0.5, 0.5 for band weights, scale, color, shape, smoothness and compactness, 

respectively.

c) Vegetation objects discrimination: once the sub-parcels were segmented, the vegetation 

(crop and weeds) objects were discriminated from the bare soil objects.  Two spectral indices were 

used: Excess Green (ExG, Woebbecke et al. 1995; equation 1) for the visible camera, and NDVI (Rouse 

et al. 1973; equation 2) for the multi-spectral camera because both indices enhance spectral 

differences of vegetation objects against the non-vegetation objects in UAV images, as previously 

reported by Torres-Sánchez et al. (2014). The determination of the optimal ExG and NDVI values for 



Capítulo 6 

172  Tesis doctoral 

vegetation discrimination was conducted by an adaptation to eCognition of an iterative automatic 

thresholding by using Otsu’s method (Otsu 1979) adapted to UAV imagery for detection of three 

herbaceous crops, including sunflower (Torres-Sánchez et al. 2015).  

 (2) 

d) Sunflower crop-line detection: after classifying vegetation and bare soil objects, those 

corresponding to vegetation were merged to determine the crop-row structure. Crop row 

orientation was determined by an iterative process in which the image was successively segmented 

in stripes with different angles (from 0 to 180º, with 1º of increasing ratio). This segmentation in 

stripes was performed in a new level above the one with the classified vegetation in order to not lose 

this information. Finally, the crop orientation was selected according to which stripes showed a 

higher percentage of vegetation objects in the lower level. After a stripe was classified as a sunflower 

crop-line, the separation distance between rows (0.70 m) was used to mask the adjacent stripes with 

this distance in order to avoid classifying areas with potential high weed infestation as crop rows. 

e) Weed-patches and weed-free maps: once the crop-rows were classified, the remaining 

stripes were classified as crop-row buffers (linear segments in contact with the crop rows) and non-

crop areas in the upper segmentation level. Next, the hierarchical relationship between the upper 

and the lower segmentation levels was used to discriminate crop from weeds. The vegetation objects 

(in the lower segmentation level) that were located either under the crop rows or under the non-

crop area (in the upper segmentation level) were classified either as sunflower or as weeds, 

respectively. The remaining vegetation objects located under the buffer area were classified 

following a criterion of minimum spectral distance, i.e., an unclassified vegetation object was 

assigned to the sunflower or the weed class depending on a higher degree of spectral similarity of 

their ExG and NDVI values to their surrounding sunflower or weed objects for the visible and the 

multi-spectral images, respectively.  

f) Site-specific treatment maps: after mapping weed-patches and weed-free areas, the 

algorithm built a grid framework at an upper level and applied a chessboard segmentation to 

generate grids of user-configurable size. For example, in this investigation and according to the usual 

characteristics of sunflower and weed-control machinery, the grid size was 0.5 x 0.5 m. Therefore, a 

new hierarchical structure was generated between the grid super-objects at the upper level and the 

sub-objects classified as sunflower, weeds or bare soil at the lower level. Next, the site-specific 

treatment maps were created according to the weed coverage maps estimated previously.  
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g) Maps at several weed thresholds: the weed coverage was mapped by identifying both 

weed-free and weed-infested zones on the basis of seven thresholds with intervals of 2.5 from 0% 

(herbicide post-emergence treatment must be applied just when there is presence or absence of 

weed) to 15% (herbicide must be applied whether weed coverage > 15%) with an increase 2.5% per 

threshold level. That is, seven herbicide treatment maps resulting from a given threshold value were 

studied for every flight altitude and camera. Both the grid dimensions and the number and 

thresholds of the weed infestation can be customised according to other cropping patterns and the 

specifications required by the herbicide spraying machinery.

4.5. Evaluation of OBIA algorithm performance  

For validation purposes, the ortho-mosaicked visible imagery collected at 30 m altitude was 

used in both fields to quantify classification accuracy because this image had a high spatial resolution 

which allowed the visual identification of weeds in each of the 49 sampling frames. That is, ground 

reference observations were derived from the vertical remote images collected at 30 m altitude. In 

addition, each sampling frame was georeferenced with a DGPS and was photographed to help to 

visually identify the individual or group of weeds and create Figure 3c to compare the on-ground 

weed infestation (observed weed density) with the outputs from image classification (estimated 

weed density). Therefore, two vector shape files were created, one of them containing the 49 1 x1 

m² sampling areas (Fig. 3b) and the other one including the crop and weeds existing in every frame 

(Fig. 3c) by using Quantum GIS software (QGIS, GNU General Public License). These vector files were 

then introduced in to the eCognition software to obtain the percentage of surface area occupied by 

the three classes, i.e., sunflower, weeds and bare soil, in every square frame in order to generate the 

reference data. Afterwards, the first vector file was overlapped with the classified image obtained by 

the OBIA algorithm to calculate the relative area corresponding to each class in every frame. The 

accuracy of the classified images was quantified by calculating the error matrix between weed 

coverage mapping outputs and the field reference data in all sampling frames grouped by the weed 

threshold (0 to 15% weed coverage) previously defined. The confusion matrix quantified the overall 

accuracy (OA) of the classification in each threshold (Congalton, 1991). 

5. RESULTS AND DISCUSSION 

5.1. Spatial resolution and area covered by ortho-mosaicked imagery 

The visible and multi-spectral cameras collected images with pixel sizes ranging from 0.0114 to 

0.0162 m and from 0.0228 to 0.0327 m at flight altitudes of 30 and 60 m, respectively, as determined 

by a proportional relationship between imagery spatial resolution and flight altitude (Table 1). 
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Furthermore, slight changes in flight altitude during the flight are critical for low altitude image 

acquisition because these variations can cause important differences in the ortho-image spatial 

resolution. Weeds can be present in the field as small or large patches, so the spatial resolution of 

the image must be considered accordingly (Figure 4). If the objective is the detection of small weed 

patches, the pixel size could be 0.01 – 0.03 m which corresponds to flight altitudes of 30 and 60 m for 

the visible camera and 30 m for the multi-spectral camera. However, when a weed patch is larger, 

the UAV images could have a pixel size larger than 0.03 m, which corresponds to 60 m flight altitude 

in the multi-spectral camera. 

Table 1. Image spatial resolution, flight length and number of images per hectare as affected by flight altitude 

and type of camera.

Camera Flight altitude 
(m)

Flight length (m:s) # Images Pixel size (m)

Visible (RGB*) 30 11:56 42 0.0114

60 5:41 12 0.0228

Multispectral 
(RGB+NIR*)

30 28:00 117 0.0162

60 11:14 35 0.0327

*RGB: Red, Blue Green, Near-Infrared 

The number of images and the flight length needed to cover the entire study area increased 

from 42 to 117 images and from 12 to 28 minutes for the visible and the multi-spectral camera, 

respectively, at 30 m altitude. A similar trend was observed at 60 m altitude. The different spatial 

resolutions and area covered for the visible and multi-spectral cameras at the same flight altitude 

resulted from differences in the technical specifications of each camera; i.e., the camera’s focal 

length and sensor size affect the extent of area covered for a given sensor, and the pixel size of the 

sensor (measured in µm) determines the relationship between flight altitude and spatial resolution 

for a given sensor. Therefore, a decrease in the flying altitude reduces the area covered by each 

single image, which results in an increase in both the sequence of images and the complexity of the 

image mosaicking procedure to obtain an ortho-image covering the entire study area. Considering 

these relationships between flight characteristics and camera types, the first decision to make when 

the user defines the flight program is which combination of flight altitude and camera type is ideal to 

keep the image spatial and spectral quality consistent to ensure weed detection and minimise the 

operating time, given potential UAV battery limitations. These considerations need to be addressed 

to design prescription control maps because early SSWM requires high accuracy geo-referencing in 

agreement to the details of the crop, weeds and soil background classes when both kind of plants are 

at very similar phenological stages and a repeating crop pattern is present.
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5.2. Classification of sunflower crop rows 

Sunflower crop rows were detected and mapped with 100% accuracy in the ortho-mosaics, at 

all flight altitudes and camera types, using the OBIA algorithm (Fig. 4). This was due not only to the 

performance of this procedure but also to the high matching of crop-line continuity of ortho-imagery 

during the mosaicking process. If mosaics were not accurate enough, crop rows would appear 

broken, incorrectly geo-referenced and consequently, moved, which would affect further OBIA 

classification. This algorithm was upgraded to incorporate the special characteristics of sunflower 

crops and now includes relevant variations to previous versions, e.g., imagery was mosaicked to 

study the whole fields to optimise the image analysis, and weed thresholds were considered in the 

construction of site-specific treatment maps. Other authors have mosaicked imagery from other row 

crops such as corn, although the objective was to determine the effect of topography on the rate of 

cross-pollination (Haarbrink and Eisenbeiss 2008). However, they found that obtaining an accurate 

ortho-image was difficult, but they did not need to map crop rows. Therefore, one of the critical 

results of the work reported here was the robustness of both the mosaicking and OBIA methods 

developed for crop-row classification and mapping. This is relevant for the successful detection of the 

vegetation objects referred to weeds placed in the inter-row areas. 

Fig. 4. a) Illustration (14 m x 8 m) of the ortho-mosaicked image taken with the still visible camera at 30 m 

altitude, and b) corresponding weed seedling map using OBIA (green: sunflower rows; red: weeds; grey: bare 

soil); c) Illustration of the ortho-mosaicked image taken with the multispectral camera at 30 m altitude, and d) 

Corresponding weed seedling map using OBIA.
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5.3. Effect of cameras and flight altitudes on mapping of weed-patches and weed-free areas  

The accuracy of weed-patch discrimination, as affected by flight altitude and camera using 

seven threshold values, are shown in Figure 5 for both sunflower fields. The classification was over 

grid units, not over pixels, therefore the accuracy was the percentage of frames correctly classified, 

i.e., the number of correct frames as a percentage of the total number of sampling frames. The 

threshold corresponding to zero means that the OBIA algorithm detects simply the presence or 

absence of weeds, that is, a percentage of weeds greater than zero was detected in the inter-row 

area, and consequently, all these weeds must be treated. A threshold of 15% means that at least 15% 

of the inter-row area of every frame was infested; if a lower weed infestation is detected and 

mapped, no treatment should be applied.  

Figure 5. Accuracy (%) of weed maps according to seven weed thresholds for the images collected with the still 

visible and multispectral cameras collected at  30 m and 60 m altitude for (a) Field 1, (b) Field 2). 

Both sunflower fields showed similar results and trends. Higher accuracies were observed with 

the multi-spectral camera at both flight altitudes, the highest (approximately 100%) was recorded for 

15% threshold, although satisfactory results from 2.5% and 5% thresholds were also obtained with 

accuracies higher than 85% for fields 2 and 1, respectively. The lowest accuracies (ranging from 50 to 

60%) were achieved with the visible camera at any flight altitude and 0% of threshold value although, 

according to Thomlinson et al. (1999) who standardised the overall accuracy of 85% for minimum 

established values, acceptable accuracies were also recorded from a 7.5% threshold for both fields. 

Best accuracies were achieved for the higher thresholds because, normally, they imply the presence 

of larger weed patches which are more easily detected by the OBIA algorithm. When analysing 

frames with only 2.5% weed infestation, the most common situation is that the weed patches are 

very small, and consequently, they are more difficult to discriminate. Analysing the flight altitude, 

accuracies for the images taken with the visible camera at 60 m were higher than at 30 m for 10% 

weed threshold for field 1 and 12.5% in field 2. A similar trend was observed with the multi-spectral 

camera. Therefore, a higher altitude corresponds to higher accuracies for high weed thresholds in 
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both fields. This indicated that, in a sunflower field with a high weed infestation, the UAV could be 

programmed to fly at 60 m altitude and perform better than at 30 m, because the weed map would 

have a satisfactory accuracy, while requiring fewer images per ha, thus improving both the flight time 

and the mosaicking process.   

Traditionally, ExG and NDVI indices have been widely used in mapping vegetation (190,000 and 

330,000 results in Google for “remote sensing” plus “Excess Green”, and “NDVI”, respectively; 

accessed August 2015), however, they were quite limited for mapping crop-rows and weeds using 

pixel-based-image-analysis in the preliminary image analyses (data not shown). This is because 

reflectance data are sensitive to canopy cover, and spectral data from crop and weed plants at early 

phenological stage are rather similar and difficult to discern. The OBIA procedure developed has the 

ability to build objects using several criteria of homogeneity, in addition to spatially accurate 

information (e.g., position, orientation, hierarchical relationships among image analysis levels).

Figure 6 displays several illustrative examples of early, site-specific, post-emergence grid maps for 

different scenarios at 30 m flight altitude, using both visible and multi-spectral cameras. They also 

contain four thresholds and the spatial distributions of treated and untreated grids. For a wider weed 

threshold, a lower weed-patch area was observed, and vice versa, consequently, the threshold value 

has a direct effect on the percentage of the field to be treated (Figure 7).  The herbicide savings 

obtained were relevant for both cameras and altitudes in both fields, although they were higher in 

field 2 due to the lower degree of weed infestation. The percentage of treated area was calculated to 

be higher when using the multi-spectral camera because the weed patches were better 

discriminated and the maps generated were more accurate than those from the visible camera. 

That is, some weed patches present in the field were not correctly classified with imagery from 

the visible camera, and as a result, no treatment was indicated. For example, using the multi-spectral 

camera at 30 m altitude, a range of 3% to 23% of the field (i.e., 77% and 97% of untreated area) 

could be treated for weed thresholds from 0 to 15%, corresponding to accuracies ranging from 74% 

to 100% for field 2. On the other hand, using the visible camera at 30 m, a range of 3 to 9% of the 

field (i.e., 92% and 97% of untreated area) could be treated for weed thresholds from 0 to 15%, 

corresponding to accuracies from 63 to 94% for field 1. As Figure 6 shows, there are some parts of 

the fields where there were clearly weed-free zones and where site-specific weed control equipment 

was not needed, allowing not only the potential reduction of herbicide applications but also the 

optimisation of fuel, field operating time and cost. Currently, accurate site-specific equipment for 

farmers to implement site-specific weed management is available. In addition, collaborative efforts 

have been conducted to develop autonomous and robotic tractors carrying different implements for 

site-specific control of weeds and other pests using a high-level decision-making system. This system 
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was designed to accurately manage the type of herbicide or dose level for other pesticides according 

to a prescription map (Pérez-Ruiz et al. 2015).

Figure 6. Several examples of maps showing the herbicide application area ( █ ) obtained for 30 m altitude, and 

using still visible camera (four upper figures) and multispectral camera (four bottom figures) for Field 2 

corresponding to four weed thresholds: a) & e) 0% ; b) & f)  5%; c) & g) 10%; d) & h) 15%. The accuracy of every 

weed map is showed in parenthesis. 

D
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Figure 7. Percentage of field surface requiring weed control in both sunflower fields based on seven weed 

thresholds according by flight altitudes and cameras.

The spatial structure was also different in both fields, i.e., the weeds were distributed in 

patches across all of field 1, but were more localised in a part of field 2. The extent of the weed-

infested area and its spatial distribution, as well as the adoption of weed thresholds, are crucial for 

the design and implementation of early SSWM. In addition, Gibson et al. (2004) stated that farmers 

would choose to treat weed-free areas rather than assume the risk of allowing weeds to go 

untreated, and Czapar et al.  (1997) reported several reasons to consider the use of thresholds, such 

as crop competition, harvesting problems, weed seed production and seed bank replenishment, time 

required to survey fields or even general field appearance. Analysing this latter work, the time spent 

to explore fields was perceived to be a limitation for the acceptance of weed thresholds by 6% of 

growers, while 26% of dealers and 39% of farm managers also identified it as a restraint. This could 

be overcome by using the technology presented here based on a UAV since the time spent to acquire 

1 ha of sunflower area was less than half an hour for any of the flight altitudes and cameras (Table 1). 

Of course, the processing time for image analysis would have to also be considered, although once 

the algorithm is developed, this time would be minimal for successive use in as many sunflower fields 

as required. Field appearance was identified by 75 % of the dealers and 36% of growers as an 

important limitation. This can be relevant if weeds of medium to large size are present in the 

sunflower fields, as was the case in this study. Pigweed and lambsquarters are considered large 

weeds, while mustard and bindweed are medium weeds according to the SEMAGI expert system 
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developed for weed management in sunflower (Castro-Tendero and García-Torres 1995). The 

authors evaluated herbicide selection according to potential yield reduction from multi-species weed 

infestations by assigning three size categories (small, medium and large) to weeds and relating the 

percentage of sunflower losses to weed density and weed biomass. They concluded that the 

subjective evaluation of farmers for weed infestation assessment usually considers the size of the 

weed for herbicide decisions and this is in agreement with the results reported by Czapar et al. 

(1997). Using SEMAGI and geostatistical tools, Jurado-Expósito et al. (2003) reported the usefulness 

of weed infestation maps for identifying the area exceeding the economic threshold to plan site-

specific spraying strategies; they obtained 61% herbicide reduction. Therefore, the site-specific 

treatment maps considering the different thresholds shown in Figure 6 could help farmers to decide 

on early SSWM operations without forgetting the subjective evaluation of their fields as an important 

component of their decision making. For example, according to the previously mentioned limitations 

found by land owners, it seems unlikely that they would choose the 15% threshold keeping treated 

approximately 5% of both fields (Figure 6) and untreated most of the fields, particularly when these 

areas subjectively would appear highly infested  due to large size of weeds such as lambsquarters or 

pigweeds.  

Current investigations are focusing on improving the OBIA algorithm when a number of 

specific field conditions, such as curved crop rows, are present in the fields. 

6. CONCLUSIONS 

Because the spatial structure of patchy distribution of weeds allows mapping of infested and 

un-infested areas, the objectives were to detect patches of weeds at early phenological stages using 

UAV imagery and to design a timely and efficient weed control program based on site-specific 

herbicide treatments according to weed cover. A UAV equipped with RGB or multi-spectral cameras 

flying at 30 and 60 m altitude was used to acquire a set of overlapped images. The spatial resolution 

of the image, area covered by each image and flight timing were very sensitive to the flight altitude. 

At a lower altitude using the visible camera, the UAV captured slightly finer spatial resolution 

imagery than at the same altitude using the multi-spectral camera. However, the number of images 

needed to cover the entire field at 30 m altitude with the visible camera was much lower than for the 

multi-spectral camera, showing that it may be a limiting factor due to potential UAV energy 

limitations. The overlapped images were ortho-mosaicked to generate imagery at very-high spatial 

resolutions (pixels ranging from 0.0114 to 0.0327 m). An accurate and automated OBIA procedure 

was developed to detect and map bare soil, crop-rows and weeds. Accurate site-specific herbicide 

treatment maps were created according to different factors: flight altitudes, camera types and weed 
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thresholds, and then relevant herbicide savings were calculated. This information can help to balance 

spatial resolution, which depends on flying altitude and type of camera with decision-making to 

calculate herbicide requirements and plan the overall weed management operations.  
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1. RESUMEN 

Las características geométricas de los árboles cultivados como el área de copa proyectada, la 

altura y el volumen de la copa, proporcionan información muy útil sobre el estado de la plantación y 

la producción del cultivo. Sin embargo, la estimación de estas variables suele ser hecha de manera 

tradicional tras un duro y exhaustivo trabajo de campo, y aplicando ecuaciones que tratan a los 

árboles como figuras geométricas, lo que produce resultados inconsistentes. Como alternativa, este 

trabajo presenta un procedimiento innovador para calcular las características tridimensionales de 

árboles individuales y en seto aplicando dos fases consecutivas: 1) generación de modelos digitales 

de superficies con vehículos aéreos no tripulados, y 2) uso de técnicas de análisis de imagen 

orientado a objetos. Nuestro procedimiento produjo resultados satisfactorios tanto en plantaciones 

de árboles individuales como en seto, llegando a un 97% de precisión en la cuantificación del área de 

copa proyectada y mínimas desviaciones en las estimaciones de la altura y el volumen en 

comparación con las mediciones en campo. Los mapas generados por el procedimiento podrían ser 

interesados para comprender las relaciones entre el crecimiento de los árboles y factores 

relacionados con el terreno, o para optimizar las operaciones de manejo del cultivo en el contexto 

de la agricultura de precisión con relevantes implicaciones agro-medioambientales. 

2. ABSTRACT 

The geometric features of agricultural trees such as canopy area, tree height and crown 

volume provide useful information about plantation status and crop production. However, these 

variables are mostly estimated after a time-consuming and hard field work and applying equations 

that treat the trees as geometric solids, which produce inconsistent results. As an alternative, this 

work presents an innovative procedure for computing the 3-dimensional geometric features of 

individual trees and tree-rows by applying two consecutive phases: 1) generation of Digital Surface 

Models with Unmanned Aerial Vehicle (UAV) technology and 2) use of object-based image analysis 

techniques. Our UAV-based procedure produced successful results both in single-tree and in tree-

row plantations, reporting up to 97% accuracy on area quantification and minimal deviations 

compared to in-field estimations of tree heights and crown volumes. The maps generated could be 

used to understand the linkages between tree grown and field-related factors or to optimize crop 

management operations in the context of precision agriculture with relevant agro-environmental 

implications. 
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3. INTRODUCTION 

The geometric measurements of the agricultural trees, such as tree height and crown volume, 

serve to monitor crop status and dynamic, to analyse tree production capacity and to optimise a 

number of agronomic tasks, such as water use, nutrient application, pruning operations and pest 

management. Conventionally, the main tree dimensions are measured by hand after an intensive 

field work and next the crown volume is estimated with equations that treat the trees as regular 

polygons or by applying empiric models (West 2009). However, collecting this data at the field scale 

is very time-consuming and generally produces uncertain results because of the lack of fit of the real 

tree to the geometric models or to the great variability in orchards that can affect the suitability of 

models based on in-field measurements. Among the technological alternatives, the Light Detection 

And Ranging (LiDAR) laser scanners and the stereo vision systems by using terrestrial or remote-

sensed measurements are currently the most relevant (Rosell and Sanz 2012). However, these 

techniques have also their own limitations in real tree orchards. On the one hand, although the 

terrestrial devices are very precise to measure tree architecture (Fernández-Sarría et al. 2013; 

Moorthy et al. 2011; Rovira-Más et al. 2008), they are inefficient in large spatial extents and are 

difficult to use in hard-to-reach field areas. On the other hand, remote-sensed data collected with 

piloted aircrafts and satellites do not often fulfil the technical requirements (e.g., sufficient spatial 

resolution or number of stereoscopic pairs) needed to detect the 3-dimensional (3-D) characteristics 

of agricultural trees in most cases (Rosell and Sanz 2012).

In recent years, a new aerial platform has joined the traditional ones: the Unmanned Aerial 

Vehicles (UAV) or drones (Luo et al. 2014; Marris 2013). Several investigations (Zhang and Kovacs 

2012) have demonstrated the advantages of the UAVs in comparison to airborne or satellite 

missions regarding its low cost and greater flexibility in flight scheduling (Torres-Sánchez et al. 2014), 

which make UAV technology a proper tool for farmers and researchers to monitor crops at the field 

scale (Anderson 2014). In addition, the UAV can automatically flight at low altitudes and with large 

overlaps, which permit the acquisition of ultra-high spatial resolution images (in the range of a very 

few centimetres) and the generation of the Digital Surface Model (DSM) using automatic photo-

reconstruction methods that are based on the “Structure from Motion” approach for 3-D 

reconstruction. As a consequence, recent investigations have focused on the generation of DSM with 

UAVs (Nex and Remondino 2014) and its interpretation over agricultural areas (Bendig et al. 2014; 

Díaz-Varela et al. 2015; Zarco-Tejada et al. 2014). 

However, in order to take full advantage of this technology, another primary step involves the 

implementation of robust and automatic image analysis procedures capable of retrieving useful 
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information from the images. To reach a high level of automation and adaptability, we propose the 

application of object-based image analysis (OBIA) techniques. OBIA overcomes some limitations of 

pixel-based methods by grouping adjacent pixels with homogenous spectral values after a 

segmentation process and by using the created “objects” as the basic elements of analysis (Blaschke 

et al. 2014). Next, OBIA combines spectral, topological, and contextual information of these objects 

to address complicated classification issues. This technique has been successfully applied in UAV 

images both in agriculture (Diaz-Varela et al. 2014; Peña et al. 2013), grassland (Laliberte and Rango 

2011) and urban (Qin 2014) scenarios. 

In this article, we report an innovative procedure for a high-throughput and detailed 3-D 

monitoring of agricultural tree plantations by combining UAV technology and advanced OBIA 

methodology. After the DSM generation with UAV images, this procedure automatically classifies 

every tree in the field and computes its position, canopy projected area, tree height and crown 

volume. For training and testing purposes, we used olive plantations as model systems and selected 

several sites with a variable degree of tree shapes and dimensions, both in conventional single-tree 

and in row-structured plantation systems. Efficacy of the procedure was assessed by comparing 

UAV-based measurements and in-field estimations. In addition, effects of spectral and spatial 

resolutions on the entire process were evaluated in each type of plantation by performing different 

flight missions in which two flight altitudes and two sensors (a conventional low-cost visible-light 

camera and a 6-band multispectral color-infrared camera) were separately tested. Finally, time 

required by each stage of the full process was weighted according to the flight mission performed.  

4. MATERIALS AND METHODS 

The full procedure consisted on three main phases (Fig. 1): 1) the acquisition of very high 

spatial resolution remote images with an unmanned aerial platform, 2) the generation of 

orthomosaics and DSMs by applying close-range photogrammetry methods, and 3) the application 

of advanced object-based algorithms to analyse the images and to retrieve the position and the 

geometric features of each tree or tree-row in the whole field. Next, each stage is described in 

detail. 

4.1. Description of the UAV and the sensors 

The UAV used in this investigation was a quadrocopter with vertical take-off and landing 

(VTOL), model MD4-1000 (microdrones GmbH, Siegen, Germany) (Fig. 2a). This UAV is equipped with 

four brushless motors powered by a battery and it can be manually operated by radio control (1000 

m control range) or it can fly autonomously with the aid of its Global Position System (GPS) receiver 
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and its waypoint navigation system. The VTOL system makes the UAV independent on a runway, 

which allows the use of the UAV in a wide range of different situations, e.g., even on steep olive 

orchards. 

Figure 1. Flowchart of the entire procedure for 3-D monitoring of agricultural tree plantations by combining 

UAV technology and object-based image analysis. (Abbreviations: 3-D (three dimensional); GPS (Global Position 

System); UAV (Unmanned Aerial Vehicle); GCP (Ground Control Point); DSM (Digital Surface Model); G (Green 

band); NIR (Near Infra-Red band); OBIA (Object-Based Image Analysis). 

Two sensors were separately tested: 1) a still point-and-shoot visible-light camera, model 

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) (Fig. 2b), and 2) a six-band multispectral 

camera, model Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA) (Fig. 2c). On the one 

hand, the visible-light camera produces 12.2 megapixel format (4,032 x 3,024 pixels) images in true 

colour (Red, R; Green, G; and Blue, B, bands) with 8-bit radiometric resolution, which are stored in a 

secure digital SD-card. It is equipped with a 14-42 mm zoom lens, although it was fixed at 14 mm 

focal length for these works. The camera’s sensor size is 17.3 x 13.0 mm and the pixel size is 0.0043 

mm. These parameters are needed to calculate the image resolution on the ground or, i.e., the 

ground sample distance (GSD) as affected by the flight altitude (equation 1). On the other hand, the 

multispectral camera is a lightweight (700 g) sensor composed of six individual digital channels 

arranged in a 2x3 array. Its sensor size is 6.66 x 5.32 mm and the pixel size is 0.0052 mm. Each 

channel has a focal length of 9.6 mm and a 1.3 megapixel (1,280 x 1,024 pixels) CMOS sensor that 

stores the images on a compact flash CF-card. The images were acquired with 8-bit radiometric 

resolution. The camera has user configurable band pass filters (Andover Corporation, Salem, NH, 

USA) of 10-nm full-width at half-maximum and centre wavelengths at B (450 nm), G (530 nm), R (670 
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and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm). More details about the sensors and 

UAV configuration can be consulted in (Torres-Sánchez et al. 2013). 

       (1) 

Figure 2. The quadrocopter UAV, model md4-1000, taking off in one of the studied fields (a) and the sensors 

used in this investigation: the visible-light camera (b) and the multispectral camera (c).  

4.2. Study sites and UAV flight missions 

We used olive plantations as model systems to develop and evaluate our procedure and 

selected four different sites with a variable degree of tree shapes and dimensions, as well as with 

two different plantation patterns: two fields with a traditional single-tree distribution (Fig. 3a,c) and 

two fields with the trees in rows (Fig. 3b,d). The fields were identified by four different letters to 

facilitate the reading of the article, as follows: field A: located in the public research farm “Alameda 

del Obispo” in Cordoba, field B: a private farm located in Adamuz (Cordoba province), field C: a 

private farm located in Pedro Abad (Cordoba province), and field D: a private farm located in 

Villacarrillo (Jaen province). 
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Figure 3. On-ground (top) and aerial (down) views of two plantations studied in this investigation with single-

tree (a, c) and tree-row (b, d) patterns, respectively. 

Different flight missions with the two sensors mounted independently in the UAV were 

performed in every field (Table 1). In the private farms, the flights were authorized by a written 

agreement between the farm owners and our research group. On the one hand, the UAV route was 

configured with the visible-light camera to continuously take photos at an interval of 1 second, 

which resulted to a forward lap of 90% at least. In this case, the UAV flied in line with a side lap of 

60%. With the multispectral camera, the UAV route was programmed to stop in every acquisition 

point due to camera technical limitations for continuum shooting (slower processing speed). In this 

case, the images were taken with a side lap and a forward lap of 60%. In all flight missions, the image 

overlapping was high enough to apply the 3-D reconstruction procedure in the next stage. According 

to these flight configurations, the visible-light camera can cover roughly 10 ha and 20 ha and the 
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multispectral camera roughly 3 ha and 6 ha, at 50 and 100 m altitude, respectively, in each regular 

30-minutes flight. 

Table 1. Description of the tree plantations and of the flight operations performed in each field. 

Tree plantation Flight operation2

Field ID Location1 Plantation pattern (tree spacing) Flight date Sensor Flight altitude 
(m)

A Cordoba (37.855N, 
4.806W)

Single-trees (7x7 m) 21st Aug, 2013 Visible-light 50, 100

Multispectral 50
B Adamuz (37.992N, 

4.505W)
Single-trees (8x8 m) 21st Feb, 2014 Visible-light 50,100

Multispectral 50,100
C Pedro Abad 

(37.960N, 4.466W)
Tree-rows (3.75x1.3 m) 21st Feb, 2014 Visible-light 50,100

Multispectral 50,100
D Villacarrillo (38.113N, 

3.163W)
Tree-rows (8x4 m) 12th May, 2014 Visible-light 50,100

Multispectral 100
1 Lat/Lon coordinate system; Datum WGS84.
2 Multispectral images of the field “B” at 100 m altitude and of the field “D” at 50 m altitude were not taken due to technical
problems.

The acquired images had different spatial resolutions according to the technical characteristics 

of the sensor and to the flight altitude as follows (equation 1): 1) the visible camera flying at 50- and 

100-m altitudes produced RGB images with a GSD of 1.53 and 3.06 cm, respectively; and 2) the 

multispectral camera flying at 50- and 100-m altitudes produced multispectral images with a GSD of 

2.71 and 5.42 cm, respectively. These experiments aimed to assess the influence of spatial and 

spectral resolution on the accuracy of the DSM generation and on the performance of the OBIA tasks 

(see sections 2.3 and 2.4, respectively). The flight routes fulfilled the requirements that were 

established by the Spanish National Agency of Aerial Security for maximum flight altitude allowed for 

UAVs, which is currently fixed at 120 m (MPR 2014).

4.3. Generation of the ortho-mosaics and of the Digital Surface Models (DSM) 

Mosaicking and DSM generation were performed using the Agisoft PhotoScan Professional 

Edition software (Agisoft LLC, St. Petersburg, Russia). The mosaicking process was fully automatic 

with the exception of the manual localisation of a few ground control points that were taken in each 

field. The entire automatic process involves three principal stages: 1) aligning images, 2) building 

field geometry, and 3) ortho-photo generation. First, the camera position for each image and the 

common points in the images were located and matched, which refined the camera calibration 

parameters. Next, the DSM was built based on the estimated camera positions and the images 

themselves. This second stage needs high computational resources and it usually takes a long time in 
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the case of using many high-resolution images. Finally, the separated images were projected over 

the DSM, and the ortho-mosaic was generated. The DSM is a 3-dimensional polygon mesh that 

represents the overflown area and reflects the irregular geometry of the ground and the tree 

crowns. The DSMs were joined to the ortho-mosaics as Tiff files, which produced a 4-band multi-

layer file from the visible-light camera (RGB bands and the DSM) and a 7-band multi-layer file from 

the multispectral sensor (6 bands and the DSM). A more detailed explanation of the PhotoScan 

functioning is given in (Dandois and Ellis 2013).

4.4. Object-based image analysis (OBIA) procedure 

The multi-layer files that were generated in the previous stage were analysed with an original 

OBIA algorithm that was developed with the eCognition Developer 9 software (Trimble GeoSpatial, 

Munich, Germany). This algorithm is auto-adaptive to any remote image with independence of the 

plantation pattern and it can be apply with minimum user interference. The algorithm is composed 

of a number of rules that are grouped in four consecutive main phases (Fig. 4): 

1) Image segmentation: The image was segmented into objects using the multiresolution 

segmentation algorithm (Baatz and Schäpe 2000) (Fig. 4a). For a better delineation of the trees, the 

layers in which the trees were more prominent, i.e., the DSM layer and either the Green band from 

the visible-light images or the NIR band from the multispectral image, were weighted to 1, and the 

remaining layers were weighted to 0. The scale parameter varied in the function of the sensor and 

the spatial resolution, and the remaining segmentation parameters were 0.6, 0.4, 0.5 and 0.05 for 

colour, shape, smoothness and compactness, respectively (Fig. 4b). 

2) Image classification: The classification task took advantage of the capacity of certain 

vegetation indices to enhance the discrimination of vegetation targets. In this investigation, the 

Excess Green index (ExG, equation 2, (Woebbecke et al. 1995)) for the visible-light images and the 

Normalised Difference Vegetation Index (NDVI, equation 3, (Rouse et al. 1973)) for the multispectral 

images were calculated. Then, a threshold for vegetation discrimination was established using Otsu´s 

automatic thresholding method (Otsu 1979) as adapted to the OBIA framework (Torres-Sánchez et 

al. 2015). After the application of the threshold to the vegetation indices values, vegetation was 

isolated from bare soil (Fig. 4c). Next, the herbaceous vegetation surrounding the trees was isolated 

considering the DSM layer and applying the criterion of vegetation with low height compared to 

surrounding soil (Fig. 4d). The vegetation pixel height was derived from the relative difference of the 

DSM values between the pixels of each individual vegetation object and the pixels of the bare soil 

surrounding each object. In this step, only the bare soil pixels that were very close to each 
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vegetation object were specifically selected as the baseline for height calculation, eliminating 

potential errors due to the terrain slope (Fig. 4e).  

     B+G+R
B=b ;

B+G+R
R=r ;

B+G+R
G=g being b;r2gExG      (2)

 
 RNIR

RNIRNDVI



  (3) 

3) Computing and mapping of the 3-D features (canopy width, length and projected area, tree 

height and crown volume) of each individual tree or tree-row: The vegetation objects that were 

classified as trees in the previous stage were merged to compound each individual tree or tree-row. 

This merging operation was performed in a new level created over the original segmentation. 

Therefore, a hierarchical segmentation structure was generated, in which the merged objects (trees 

or tree-rows) were in the upper level and the segmented objects were in the bottom level. At this 

point, the geometric features such as width, length and projected area of the tree canopy and the 

tree height were automatically calculated by applying a looping process in which each tree or tree-

row was individually identified and analysed. Next, the crown volume was calculated by integrating 

the volume of all of the individual pixels (bottom level) that were positioned below each tree or tree-

rwo (upper level) in the hierarchical structure. In this operation, the height and area of every tree 

pixel were multiplied to obtain the pixel volume, and the tree volume was subsequently derived by 

adding the volume of all of the pixels below each olive tree or tree-row. This step was performed at 

the pixel level, which permitted dealing with the irregular shape of every tree or tree-row and 

consequently avoiding the errors that are usually produced in empirical estimations due to inexact 

comparisons of the trees or tree-rows to regular solids. 

4) Delivery of the map outputs: After computing the tree geometrical features, the OBIA 

procedure automatically exported such information as vector (e.g., shapefile format) and table (e.g., 

excel or ASCII format) files for further analysis and applications. 



Capítulo 7 

196  Tesis doctoral 

Figure 4. Partial views of each phase of the OBIA procedure developed to classify agricultural-tree plantations: 

a) Mosaicked image composed of the spectral information (in this example, multispectral bands) and the DSM 

data, b) segmentation output, c) classification of the vegetation objects (in green color), d) removal of the 

herbaceous vegetation, e) identification of the bare-soil area (in orange color), which is used as the base line to 

calculate the height of the neighbouring vegetation objects (in dark green color), and f) classification of the 

trees (in bright green color), herbaceous vegetation (in dark green color) and bare soil (in red color) based on 

the spectral information and the vegetation height. 
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4.5. Training and validation of the methodology 

This investigation was conducted following a training/validation procedure. The training stage 

was performed in the field A and the field C as representative of single-tree and tree-row 

plantations, respectively, and consisted of testing the flight configuration and image acquisition. This 

stage also involved visual tests of image quality and evaluation of the aptitude of the mosaicked 

images and their associated DSMs to build the tree structures and to retrieve their geometric 

features. In addition, we also developed the OBIA algorithms in the training fields. Next, the 

validation procedure was performed in the field B and the field D as representative of single-tree 

and tree-row plantations, respectively. Three geometric features, namely the projected area of the 

canopy, tree height and crown volume, were evaluated by comparing the UAV-estimated values and 

the on-ground values observed in the validation fields. 

In the case of the projected area, the observed values were derived by manually delineating 

the shape of all of the trees or tree-rows over the mosaicked images that were generated in each 

flight route. Then, the classification outputs that were generated by the OBIA algorithms were 

overlapped with the manual classifications to compute the area of coincidence for each tree or tree-

row and to calculate the overall classification accuracy in each scenario (equation 4).  









area Total
classifiedcorrectly  Area100(%)Accuracy tion Classifica Overall     (4) 

In the case of height and volume quantification, 24 trees in the field B and 30 trees in the field 

D were selected for validation. All of the trees were georeferenced with a GPS device to locate their 

position in the mosaicked images. In addition, the tree height and canopy diameter were manually 

measured with a ruler, and the crown volume was estimated assuming an ellipsoid form and 

applying a validated method (equation 5) for olive tree geometric measurements (Pastor 2005). 

However, the crown volumes were not calculated in the field D because its row structure impeded 

the identification of tree edges in the longitudinal axis. 
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The efficacy of the entire procedure (mosaicked images, DSM layer and OBIA algorithms) to 

measure the tree height and crown volume of individual trees was assessed by comparing the UAV-

estimated values and on-ground values that were observed in the 54 validation trees. Then, the 

overall accuracy and its associated average error (equation 6) that were attained in each scenario 

(two validation fields and several flight altitudes), as well as the root mean square error (RMSE) and 
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correlation coefficient that were derived from the regression fit, were calculated to quantify the 

influence of each factor on monitoring each studied tree variable. 
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5. RESULTS AND DISCUSSION 

5.1. Quality of ortho-mosaic and DSM generation 

The figs 5a and 5b show the 3-D representation generated in two fields with single-tree and 

tree-row systems, respectively. Each image was composed of two products: the ortho-mosaic and its 

associated DSM. Both plantations were modelled in 3-D with high accuracy, showing the irregular 

shape of the trees and of the tree-rows including typical crown gaps and branch distribution, which 

allowed computing tree volume regarding the real crown shape. The ortho-mosaics were 

successfully created in all the studied scenarios (four fields, two sensors and two flight altitudes), 

with the exception of the images that were collected with the multispectral sensor over the tree-row 

plantations. However, the quality of the DSMs was variable as affected by the sensor type and the 

tree plantation system (Table 2). With the independence of the flight altitude, the DSMs were 

satisfactorily generated in both single-tree plantations (field A and field B) with the multispectral 

sensor and in both tree-row plantations (field C and field D) with the visible-light camera. In fact, 

more than 96% of the trees in the single-tree fields and the 100% of the rows in the tree-row fields 

were correctly modelled, and only some mixing effects were observed after the image analysis 

process in the DSMs that were generated with the visible-light images that were captured at a 100-

m altitude. In contrast, the DSM generation procedure partially failed with the visible-light images 

collected in the single-tree fields (mainly in the field B). In these cases, the 3-D structure of some of 

the trees was not built and, consequently, the mosaicked images showed some blurry areas. On the 

one hand, we observed that the procedure for 3-D reconstruction with the visible-light images was 

more problematic in the trees with a low canopy density. As a consequence, we hypothesized that 

the low colour contrast between some trees and their surrounding bare soil area was the reason of 

the errors in the generation of the DSM in the separated-tree cropping system scenarios. In fact, 

greater errors were obtained in the field B, where the colour of many trees was similar to that of 

bare soil, than in the field A, where a greater contrast between the trees and the bare soil was 

observed. On the other hand, the multispectral sensor totally failed in both row-tree plantations due 

to certain difficulties of the 3-D reconstruction software to find common points during the image 

alignment process. We attributed these errors to insufficient spatial resolution of this sensor in 
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order to match similar points in overlapped images taken over homogeneous targets, as we also 

observed in additional investigations on herbaceous crops. 

Figure 5. 3-D representation of a single-tree plantation generated with a multispectral sensor (a) and of a tree-

row plantation generated with a visible-light camera (b). 

Table 2. Number and percentage of trees or tree-rows correctly reconstructed during the DSM generation 

procedure as affected by the sensor type and the flight altitude in each of the studied fields. 

Trees or tree-rows correctly 
reconstructed

Field 
ID

Plantation pattern Sensor Fligh altitude (m) Number %

A Single-trees

Visible-light 50 65 73

100 86 97

Multispectral 50 89 100

B Single-trees

Visible-light 50 27 20

100 74 55

Multispectral 50 135 100

100 130 96

C Tree-rows

Visible-light 50 9 100

100 9 100

Multispectral 50 0 0

100 0 0

D Tree-rows

Visible-light 50 10 100

100 10 100

Multispectral 50 10 100

5.2. Classification accuracy as affected by the flight altitude 
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After building the 3-D models of the four studied fields, we applied our original OBIA 

procedure in order to classify the remote images (Fig. 6) and to measure the geometric features of 

each individual tree or tree-row, whichever applies. Our OBIA procedure was designed to auto-

adapt, with minimum user intervention, to any agricultural tree plantation with a similar crop 

patterns (e.g., citrus groves, vineyards or Prunus orchards). The algorithms were submitted to a 

training/validation procedure, in which the images collected in the fields A and C were used for 

creating and training the OBIA algorithm and the images collected in the fields B and D were used to 

validate the results (section 2.5). The classification procedure achieved an overall accuracy of 

approximately 95% or even higher in the most cases (Table 3). With the independence of the sensor 

used and the field studied, minor differences in the classification accuracy were observed for 

different flight altitudes. The visible-light and the multispectral sensors captured images with pixel 

sizes ranging from 1.5 cm to 3.1 cm and from 2.7 cm to 5.4 cm at the studied flight altitudes, 

respectively. The high spatial resolution imagery that was generated by both sensors, even at a 100-

m flight altitude, permitted the correct identification of the tree canopy, which produced a 

successful classification in every case. Generally, at least four pixels are required to detect the 

smallest objects within an image (Hengl 2006). Accordingly, the sensors that were used in this 

investigation were adequate for analysing individual tree or tree-row structures with a minimum 

dimension of approximately 10x10 cm or even smaller if the flight altitude was lower than 100 m.  

Therefore, these results recommend collecting the UAV remote images at the highest altitude 

allowed by the aviation regulations (in Spain, 120 m maximum (MPR 2014)) in order to capture the 

maximum ground area in each image and to consequently optimise the flight mission length and 

image ortho-mosaicking process. 

Table 3. Overall accuracy attained by the OBIA algorithm in the classification stage. 

Field 
ID

Plantation 
pattern

Sensor Flight Altitude (m) Overall Accuracy (%)

A Single-trees Multispectral 50 97.4

B Single-trees
Multispectral 50 96.9

100 94.5

C Tree-rows
Visible-light 50 93.1

100 86.8

D Tree-rows
Visible-light 50 96.4

100 95.7
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Figure 6. Classification outputs generated by the OBIA algorithm developed in this investigation. Our innovative 

algorithm automatically classified individual trees (a, b) or tree-rows (c, d), herbaceous vegetation and bare soil 

areas and, simultaneously, computed the geometric features (projected canopy area, tree height and crown 

volume) of each individual tree or tree-row in the whole plantation. 

5.3. Quantification of the tree geometric features (canopy area, tree height and crown volume)  

5.3.1. Canopy area 

The relation between canopy projected area classified by the OBIA procedure and the 

observed values at the 50-m-altitude images was close to the 1:1 line (R2=0.94, RMSE=1.44 m2), 

although it tended to a subtle underestimation of the trees or groups of nearby trees larger than 20 
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m2 (Fig. 7). With the 100-m-altitude images, this relationship was also close to the 1:1 line, but the 

correlation coefficient (R2=0.90) and the RMSE (2.14 m2) was slightly worse than at the ones 

reported at 50-m-altitude. The canopy areas of all the trees were estimated with minimum errors in 

the images at both flight altitudes, which demonstrated algorithm robustness. In fact, the tree 

canopy edges were automatically defined with high precision even in zones with surrounding 

herbaceous vegetation, where discriminating vegetation types is a complicate task due to their 

similar spectral responses. In this case, tree classification was facilitated by incorporating the DSM 

information (i.e., pixel height) as an input layer in the segmentation procedure and, afterwards, by 

using an automatic height-based thresholding method for identifying the tree canopy edges. 

Figure 7. Classified vs. observed tree projected area after applying the OBIA algorithm in the remote images 

collected at 50 m (left) and 100 m (right) of flight altitude over the field B. The solid line is the fitted linear 

function and the dotted line is the 1:1 line. 

5.3.2. Tree height 

Tree height was estimated with unprecedented accuracy, reporting averaged errors in the 

range of 0.17-0.18 m from the images captured with the visible-light camera and of 0.22-0.53 m 

from the images captured with the multi-spectral camera (Table 4). Previous investigations with a 

similar image-based UAV technology reported RMSE values on tree height estimations in the range 

of 0.33-0.39 m (Zarco-Tejada et al. 2014) and of 0.44-0.59 m (Kattenborn et al. 2014) in olive-tree 

and palm-tree plantations, respectively. An essential difference with these investigations refers to 

the image analysis technique used to compute the tree parameters in each case. We implemented 

an OBIA algorithm instead of the pixel-based filtering algorithms applied in (Kattenborn et al. 2014; 
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Zarco-Tejada et al. 2014). OBIA has various advantages for analysing high-resolution images where 

the pixels can be aggregated to create new elements (e.g., trees) with an evident spatial pattern. 

Here, the OBIA algorithm identified all the trees in the plantation with very high accuracy (table 3) 

and treated each of the trees as an individual object. This tree-by-tree procedure can exactly select 

the local maxima (in the tree apex) and minima (in the surrounding on-ground base-line) extreme 

pixels that are used by the OBIA algorithm to calculate the height of each individual tree. By 

comparing the on-ground observed and the UAV-measured height values, the coefficient of 

determination was 0.90 and 0.84 for the UAV-images captured at 50-m and 100-m flight altitudes, 

respectively (Fig. 8). The regression line was very close to the 1:1 line with the results derived from 

the images captured at 50-m flight altitude, although some under-estimation was obtained from the 

100-m-altitude images, particularly in the case of trees shorter than 4 m height. In general, the UAV-

based estimations of the tree heights only deviated a few centimetres from the on-ground 

measurements. However, these deviations were greater in the shortest trees and using the highest 

flight altitude, which likely denotes a positive relationship between both variables. For this 

application, these errors are tolerable but, if required, vertical estimations could be improved by 

reducing the flight altitude according to tree heights, although further investigation is needed to 

determine the optimal flight configuration for image-based 3-D photo-reconstruction.  

Table 4. Tree height quantification errors (average and standard deviation) accounted in the validation fields. 

Tree height quantification error
Field ID Plantation 

pattern
Sensor Flight Altitude 

(m)
Averaged Standard 

deviation

B Single-trees
Multispectral 50 0.22 m (6.32 %) 3.41

100 0.53 m (15.55 %) 8.12

D Tree-rows
Visible-light 50 0.18 m (3.75 %) 3.06

100 0.17 m (3.54 %) 3.16

5.3.3. Crown volume 

A precise measurement of tree projected area and tree height was crucial for modelling tree 

crowns and consequently for computing tree volume in the next phase. The relationship between 

the UAV-based and the on-ground-based volume estimations of the individual trees is shown in the 

fig 9. The coefficient of determination was 0.65 and 0.63 with the 50- and the 100-m-altitude 

images, respectively. In this case, the differences between both variables do not denote real errors 

of the UAV-based measurements because the on-ground-based values were derived by applying the 

conventional geometric equation that considers the trees as ellipsoid forms (West 2009), which can 

produce inexact on-ground estimations. On the contrary, the 3-D products derived in this 
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investigation reconstruct the irregular shape of the tree crown, which hypothetically allows better 

estimations of tree volume than those ones derived from on-ground measurements. In any case, 

similar magnitudes were observed between both approaches with independence of the flight 

altitude considered; i.e., the trees that were identified as bigger on the ground were also quantified 

as trees with larger volumes by the UAV-based procedure and vice versa (Fig. 10). 

Figure 8. Comparison between on-ground observed and UAV-estimated tree height values measured from the 

images captured at 50 m (left) and 100 m (right) of flight altitude, respectively. The results in the tree-row 

plantations (blue dots) were obtained with the visible-light camera and in the single-tree plantations (red dots) 

with the multispectral sensor. The solid line is the fitted linear function and the dotted line is the 1:1 line. 

Figure 9. Comparison between on-ground-based volume estimations and UAV-based tree volume values 

computed from the UAV-images captured at 50 m (left) and 100 m (right) of flight altitude, respectively. The 

UAV-based values were calculated by integrating the volume of all the pixels within each image-object 
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corresponding to each individual tree, which permitted dealing with the irregular shape of every tree and 

consequently avoiding the errors due to inexact comparisons of the trees to regular solids. The UAV-based 

values were compared to on-ground estimations, which were calculated after manually measuring tree canopy 

diameter and tree height with a ruler and then applying the ellipsoidal geometric model. 

Figure 10. Spatial position and crown volume computed in the validation field B by using UAV-images captured 

at 50 m (green circles) and at 100 m (dotted circles) of flight altitude with the multispectral sensor and their 

relative comparison to the on-ground estimations of the validation trees (solid circles). 

5.4. Detailed map information provided by the OBIA algorithm 

After extracting the geometric features of every individual tree or tree-row in the entire 

plantations, an additional advantage of the OBIA procedure was its capacity to automatically 

compute such information at different levels and export accurate data as vector (e.g., shapefile 
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format) and table (e.g., excel or ASCII format) files. On the one hand, global information at the field 

level includes field dimensions, the number of trees, averaged tree spacing and tree statistical data 

(e.g., medium and standard deviation of tree heights and crown volumes). On the other hand, spatial 

data at the tree or tree-row level includes the central coordinates, dimensions of the main length 

and width axes, canopy projected area, tree height and crown volume (Table 5). This spatial 

information allows creating maps of each one of the geometric features studied (Fig. 10), which 

show the heterogeneity of the whole plantation and the zones in the field with different tree 

growth.  

Table 5. A sample of the output data file computed at the tree level. Accurate spatial data of each individual 

tree was automatically computed by the OBIA procedure in a field with 135 trees. In this case, the remote 

images were taken at 50 m flight altitude with a multispectral sensor. 

Tree ID Position1 Geometric features

X Y Length axis 
(m)

Width axis 
(m)

Projected area 
(m²)

Height 
(m)

Volume 
(m3)

1 367,769 4,206,048 4.78 4.00 13.21 3.85 21.84

2 367,774 4,206,048 5.15 4.72 12.98 1.67 11.66

3 367,777 4,206,042 2.51 1.59 2.57 3.25 5.47

… … … … … … … …

135 367,784 4,206,050 4.59 4.34 12.91 3.49 33.21
1 UTM coordinate system (zone 30N); Datum WGS84.

5.5. Time consumption 

Considering the entire workflow from flight operation to features extraction, the required 

time to monitor one hectare of field surface varied from several minutes to a few hours depending 

on the sensor used and the number of the remote images collected by the UAV (Table 6). Most 

percentage of time was dedicated to image mosaicking and analysis, which is mainly affected by 

image spatial resolution. For this reason, time needed to process the visible-light images (4,032 x 

3,024 pixels) was pretty longer in comparison to multispectral images (1,280 x 1,024 pixels). 

However, processing time was registered using a standard computer (16 GB of RAM, Intel core i5 

processor and graphic card of 1 GB), so a drastic reduction of this time is possible with a more 

powerful computer.  
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Table 6. Averaged time per surface hectare consumed by each step of the UAV-based workflow as affected by 

the type of sensor and flight altitude. 

Time (h:min)/ha

Sensor
Flight altitude 

(m)
#  images/ha

Flight 
operation1

Image 
mosaicking

OBIA 
analysis

Total

Multispectral
50 60 0:13 0:25 0:09 0:47

100 10 0:07 0:02 0:04 0:13

Visible-light
50 70 0:05 4:00 1:10 4:15

100 20 0:03 0:40 0:25 1:08
1 With the visible-light camera, the UAV route was configured to continuously take photos with an interval of 
3 seconds, flying in lines at 3 m/s with a side lap of 60%. With the multispectral camera, the UAV route was 
programmed to stop in every acquisition point. The multispectral images were taken with 60% side and forward 
overlaps.

Accordingly, an agreement between result accuracy and operation length is needed in order 

to select the sensor and the optimum flight configuration. In our investigation, results obtained at 50 

m altitude were around 10-20% better than the ones obtained at 100 m altitude, although image 

processing was around four times longer at 50 m altitude. From a practical point view, the 100-m-

altitude images are recommended in order to increase the ground area covered in each flight and, 

consequently, to reduce both the mission length and size of the image set. However, the potential 

precision expected from each flight altitude should also be considered according to the project 

quality requirements. 

6. CONCLUSIONS 

This investigation has shown the capacity of UAV technology to efficiently produce 3-D 

geometrical data of hundreds of agricultural trees at the field level. In combination with an 

innovative object-based image analysis algorithm, we computed the canopy area, tree height and 

crown volume of the trees in a timely and accurate manner, which offers a very valuable alternative 

to hard and inefficient field work. After comparing a set of remote images collected with both a 

visible-light camera and a multispectral sensor, we concluded that the upper one is better 

recommended for fields with a tree-row plantation pattern and the latter one for single-tree 

plantations. We also observed minimum differences between the results obtained with the images 

collected at 50-m and at 100-m of flight altitude, concluding that the taller altitude should be 

generally selected in order to reduce the time needed to collect and to process the images. 

The georeferenced information provided by our procedure allows creating maps of orchard 

heterogeneity and, consequently, observing zones with different tree sizes. These maps are critical 
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to understand the linkages between tree grown and field-related factors (soil properties, weed 

infestations, etc.) or to study the mutual relationship between nearby trees, which can help to 

detect problems associated to soil or crop deficiencies or to diagnostic tree pathologies. In addition, 

these maps allow adopting a strategy for site-specific management of homogenous zones based on 

filed field or tree spatial variability in the context of precision agriculture (Zhang and Kovacs 2012), 

which could increase farmer net economic returns by economising on inputs (fertiliser, pesticide, 

water, etc) and field operations (pesticide application, irrigation, harvesting, pruning, etc). 

Particularly in this context, there is a demand for developing a timely site-specific program to 

reduce the issues that are associated with current pest control practices in crops and to comply with 

the European legislation and concerns for the Sustainable Use of Pesticides (Regulation EC No 

1107/2009; Directive 2009/128/EC). These regulations include such key elements as reductions in 

applications using an adequate amount of pesticides according to the specific requirements. Our 

investigation offers a reliable tool for an accurate and high-throughput monitoring of the spatial 

variability of agricultural-tree fields under two different plantation patterns, including tree height 

and crown volume of all the trees in the whole plantation, which could be used to save agricultural 

inputs and to optimize crop management operations with relevant agro-environmental implications. 
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CAPÍTULO 8 

3-D VINEYARD MONITORING WITH UAV 
IMAGES AND A NOVEL OBIA PROCEDURE 

FOR PRECISION VITICULTURE APPLICATIONS 

Torres-Sánchez, J., López-Granados, F., Jiménez-Brenes, F.M., Borra-Serrano, I., de Castro, A.I., Peña, 
J.M. (2016). 3-D vineyard monitoring with UAV images and a novel OBIA procedure for precision 
viticulture applications. Enviado a Computers and Electronics in Agriculture
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1. RESUMEN 

La estructura tridimensional de los viñedos puede ser reconstruida mediante la aplicación de la 

fotogrametría a imágenes aéreas tomadas con UAV. Esta información tridimensional es muy valiosa 

para la implementación de estrategias de viticultura de precisión, como por ejemplo, el diseño de 

tratamientos localizados adaptados a la detección de las cepas y marras, o el ajuste de las 

aplicaciones de fitosanitarios de acuerdo al tamaño de la cepa, entre otros. Sin embargo, el 

procesamiento de la gran cantidad de datos sobre el cultivo presentes en las imágenes y modelos 

tridimensionales de las viñas es actualmente un cuello de botella de esta tecnología. Para resolver 

esta limitación, se ha desarrollado un novedoso y robusto algoritmo de OBIA para la caracterización y 

monitorización 3D de viñedos. El procedimiento OBIA es totalmente automático, es auto-adaptativo 

a diferentes situaciones en el campo y puede calcular información del cultivo exportable en formato 

de tabla, vectorial o ráster. Los resultados obtenidos en tres campos de ensayo en dos fechas 

demostraron una gran precisión en la clasificación de las cepas, de en torno al 90-95%, así como 

pequeños errores en la estimación de la altura de la viña (RMSE de 0,18 m de media). Además, el 

algoritmo puede calcular la posición, área proyectada y volumen de cada cepa en el viñedo, lo que 

aumenta el potencial de esta tecnología para las aplicaciones de control localizado.  

2. ABSTRACT 

The three-dimensional (3D) structure of vineyard fields can be generated by combining aerial 

images collected with Unmanned Aerial Vehicle (UAV) technology and photo-reconstructed digital 

surface models (DSMs). This 3D information is very valuable for the implementation of precision 

viticulture strategies, e.g., designing site-specific treatments adapted to grapevines and gap 

detection or the adjustment of phytosanitary applications according to canopy size and height, 

among others. However, processing the large amount of detailed crop data embedded in the UAV 

images and the DSMs is currently a bottleneck of this technology. To solve this limitation, a novel and 

robust object-based image analysis (OBIA) procedure was developed for vineyard field monitoring 

and 3D grapevine characterization. The OBIA procedure is fully automatic, is auto-adaptive to 

different crop-field conditions and can compute explicit crop information both in table, vector 

(shape-file) and raster (map) formats, as follows: 1) grapevines and row gap classification, and 2) 

grapevine dimensions. The results obtained in three testing fields on two different dates showed 

high accuracy in the classification of grapevine area and row gaps at approximately 90% and 95%, as 

well as minor errors in grapevine height estimates (RMSE of 0.18 m, on average). In addition, the 

customized algorithms included in the OBIA procedure computed the position, projected area and 



Capítulo 8 

216  Tesis doctoral 

volume of every grapevine in the field, which increased the potential of this UAV-based technology 

as a tool for site-specific crop management applications.    

3. INTRODUCTION 

Vineyard yield and grape quality depends on several field-related factors and changing 

weather conditions. Studying the influence and spatial distribution of these factors allows grape 

growers to improve vineyard management according to quality and productivity parameters 

(Bramley and Hamilton 2004). In this context, precision viticulture (PV) has arisen in recent years as a 

new approach in grape production. PV is based in assessing intra- and inter- crop-field spatial 

variability and implementing site-specific crop management systems (Arnó Satorra et al. 2009). The 

ultimate objective is to optimize crop production and profitability through a reduction in production 

inputs (e.g., pesticides, fertilizers, machinery, fuel, water, etc.) and, consequently, diminish potential 

damage to the environment due to  the  over-application of inputs (Schieffer and Dillon 2014; Tey 

and Brindal 2012). To design site-specific management strategies, georeferenced information of the 

grapevine canopy structure and its variability at the field scale are required as fundamental input 

data. As an alternative to time-consuming on-ground methods traditionally used to collect crop data, 

remote sensing offers the possibility of a rapid assessment of large vineyard areas (A. Hall et al. 2002; 

Johnson et al. 2003). Among the remote sensing platforms, Unmanned Aerial Vehicles (UAVs) stand 

out because of their unprecedented high spatial and temporal resolutions, which are essential for the 

accurate and timely monitoring of the crop. At present, UAVs are widely used for a wide range of 

purposes in viticulture, such as the assessment of water status (Baluja et al. 2012), characterization 

of the vine canopy (Ballesteros et al. 2015; Mathews and Jensen 2013), or to study the spatial 

variability of yield and berry composition (Rey-Caramés et al. 2015). UAVs are able to fly at low 

altitudes with high image overlap, which permits the generation of Digital Surface Models (DSMs) 

using photo-reconstruction techniques and artificial vision (Nex and Remondino 2013). The UAV-

based DSMs have recently been used in agricultural applications, e.g., for the three-dimensional (3D) 

characterization of herbaceous and woody crops with the aim of monitoring crop conditions and 

growth (Bendig et al. 2014; Burgos et al. 2015; Torres-Sánchez et al. 2015).

Processing the large amount of detailed crop data embedded in the UAV images and the DSMs 

to extract useful information requires the implementation of robust and automatic image analysis 

procedures. In the last few years, object-based image analysis (OBIA) has reached high levels of 

automation and adaptability to ultra-high spatial resolution images and, in comparison with 

conventional pixel-based methods, proposes better solutions to the problem of pixel heterogeneity 

(Blaschke et al. 2014). The first step in OBIA is image segmentation, which consists of creating 
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“objects” by grouping adjacent pixels with homogenous spectral values. Next, OBIA combines the 

spectral, topological and contextual information of these objects to address complicated 

classification issues. Successful examples of OBIA applications include agricultural (Peña et al. 2013), 

grassland (Laliberte and Rango 2011) and forest scenarios (Hellesen and Matikainen 2013). 

In this investigation, a novel OBIA procedure, composed of a rule-set of customized algorithms, 

was developed for the monitoring of vineyard fields with the main objective of automatically 

characterizing the 3D structure of the grapevines. This 3D information was previously generated by 

combining aerial images collected with an UAV equipped with a low-cost camera and photo-

reconstructed digital surface models (DSMs). Specific objectives included the following: 1) automatic 

classification of grapevines and row gaps, even in fields with inter-row vegetation (cover-crop, weeds 

or grass), which has been reported in previous studies as a complex scenario due to the spectral 

similarity of different vegetation types observed in the field (Baluja et al. 2012), and 2) automatic 

estimation of grapevines position (geographic coordinates) and dimensions (projected area, height, 

and volume). This output information is very valuable to for the application of precision viticulture 

strategies, e.g., designing site-specific treatments adapted to grapevine structure and the detection 

of row gaps or adjusting phytosanitary applications according to canopy size and height, which can 

contribute to notable savings in products and tasks (Llorens et al. 2010). 

4. MATERIALS & METHODS 

4.1. Study fields and UAV flights 

The experiment was carried out in three different commercial vineyards located in the 

province of Lleida, Northeastern Spain (Table 1). The private company Raimat, owner of the fields, 

authorized this investigation and gave permission for the UAV flights. All the fields were vertically 

shoot-positioned with the rows separated by 3 m, and had inter-row green vegetation (Fig. 1a).  

Table 1. Main characteristics of the study fields. Coordinates are in the WGS84, UTM zone 31N reference 

system. 

Field Grape variety
Studied Area 

(m2)
Central Coordinates (X, Y)

9 Merlot 4,925 291,009 E; 4,613,392 N

24 Albariño 4,415 291,303 E; 4,614,055 N

111 Chardonnay 2,035 290,910 E; 4,616,282 N

The remote images were acquired with a low-cost commercial off-the-shelf camera, model 

Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan) mounted in a quadcopter model MD4-
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1000 (microdrones GmhH, Siegen, Germany) (Fig 1b). The camera weighs 0.38 kg and is equipped 

with a 14–42 mm zoom lens, although it was fixed to a 14 mm focal length for this study. The 

camera’s sensor size is 17.3 x 13.0 mm and the pixel size is 0.0043 mm. The camera takes 12.2 

megapixel (4,032 x 3,024 pixels) images in true color (Red, R; Green, G; and Blue, B, bands) with 8-bit 

radiometric resolution, which are stored in a secure digital SD-card in JPEG format. The UAV can be 

manually operated by radio control (1,000 m control range) or it can execute user-defined flight 

routes autonomously using its autopilot in combination with its Global Navigation Satellite System 

(GNSS) receiver. The UAV is battery powered and can load any sensor weighing up to 1.25 kg.  

Figure 1. Images of the studied fields: a) green inter-row covers in Field 111 on July; b) the unmanned 

aerial vehicle taking off over Field 9; c) and d) comparative of the condition of the vines in Field 24 on July and 

September. 

Two flights were performed in each field, on 29th July 2015 and on 16th September 2015, 

corresponding to different crop stages. In July, the grapevine canopy was fully developed, while in 

September, the grapes had been machine-harvested, and consequently, the grapevine canopy was 

less dense (Fig.1c and 1d). The diversity of the fields and the different dates made possible the 

analysis of a wide range of situations to ensure the robustness of the OBIA procedure. All of the 

flights were performed at a 30 m flight altitude, with a resulting ground sampling distance of 1 cm. 

The flight route was designed with a forward lap of 93% and a side lap of 60%, which was high 
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enough to achieve the 3D reconstruction of woody crops according to previous investigations 

(Torres-Sánchez et al. 2015). 

4.2. DSM and orthomosaic generation 

DSM and orthomosaic generation was done using the Agisoft PhotoScan Professional Edition 

software (Agisoft LLC, St. Petersburg, Russia) version 1.2.4 build 1874. The mosaicking process was 

fully automatic, with the exception of the manual localization of 5 ground control points taken with a 

GPS device in the corners and in the center of each field for georeferencing the DSM and 

orthomosaic. The whole automatic process involves three principal stages: 1) aligning images, 2) 

building field geometry, and 3) ortho-photo generation. First, the camera position for each image and 

common points in the images were located and matched, which facilitated the refinement of camera 

calibration parameters. Next, the DSM was built based on the estimated camera positions and the 

images themselves. Finally, the individual images were projected over the DSM, and the orthomosaic 

was generated. The DSMs were saved in greyscale tiff format. More details about the Photoscan 

functioning are given in (Dandois and Ellis 2013). Information about the processing parameters of the 

software can be observed in Table 1. 

Table 2. Processing parameters of the DSM and orthomosaic generation processes in Agisoft Photoscan 

PROCESSING PARAMETER VALUE

Alignment parameters

Accuracy High

Pair preselection Disabled

Dense point cloud

Quality High

Depth filtering Mild

DEM

Coordinate system WGS84 / UTM zone 31 N

Source data Dense cloud

Orthomosaic

Blending mode Mosaic

4.3. OBIA algorithm 

The OBIA algorithm for the detection and characterization of grapevine rows (Fig. 2) was 

developed with the eCognition Developer 9 software (Trimble GeoSpatial, Munich, Germany). It does 

not need any user intervention and can be divided into three major steps: 1) grapevine classification, 

in which the grapevines are detected with the DSM using their differences in height with reference to 
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the soil; 2) row gap detection, in which the row segments in the absence of grapevines are classified 

as “gaps”; and 3) morphological characterization of every grapevine segment. The DSM in geoTIFF 

format was used to perform the three steps, while the orthomosaics were only used to validate the 

classification results.  

1. Vine classification: the DSM is segmented in a grid of squares with 0.5-m sides. This size was 

selected in relation to the vine row width, which is approximately 0.7 m. All of the squares 

with a standard deviation of the values in the DSM below 0.15, i.e., squares with a low 

variability in their altitude, are classified as soil squares. The remaining squares are classified 

as “vine candidates”. One by one, the squares classified as “vine candidates” are segmented 

in pixel size, and the mean difference of altitude between these pixels and the neighboring 

soil squares is calculated. If the difference is higher than the minimum vine altitude (0.8 m in 

these fields), the pixel is classified as “vine”. Analyzing each “vine candidate” separately 

allows only the surrounding soil altitude to be taken into account, which prevents a 

comparison of the vine height with the average soil altitude, which could result in mistakes in 

vineyards grown in fields with slope. After the processing of all of the “vine candidate” 

squares, the vines in the field are classified. This process is quick due to the simplicity of the 

calculations, and the presence of cover in the inter-row areas does not interfere with the 

vine classification because it is based on height detection and not on vegetation indices 

thresholding.   

2. Gap detection in vine rows: once all of the vines are classified, their orientation is used to 

rotate the image. By doing this, the image shows the rows horizontally, which eases the 

following processes. The first one is the creation of an upper level of analysis, which is 

segmented in horizontal rows with a width of 0.5 m.  Then, the algorithm looks for the row 

with the highest percentage of vine in the lower level. This row and its neighbors are 

classified as a “vine row”, and the rows sharing a border with these ones are classified as “no 

vine rows” to simplify the search for vine rows in the following steps of the algorithm. These 

steps are repeated in a loop until all of the rows are classified as “vine row” or “no vine row”. 

For detecting the gaps in the vine rows, they are segmented and the objects without vines in 

the lower analysis level are classified as “gap”. The “gap” objects are copied to the lower 

level, and the upper level is deleted. After all of these processes, the vines and the gaps in 

the vine rows are classified.  

3. Vine segments characterization: the vine rows were segmented into 2-m-long objects, and a 

lower level representing the vine divided in pixels was created. At this point, the geometric 

features such as width, length and projected area of the vine canopy and the vine height 

were automatically calculated by applying a looping process in which each vine segment was 
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individually identified and analyzed. Next, the crown volume was calculated by integrating 

the volume of all of the individual pixels (bottom level) that were positioned below each vine 

segment (upper level) in the hierarchical structure. In this operation, the height and area of 

every vine pixel were multiplied to obtain the pixel volume, and the vine volume was 

subsequently derived by adding the volume of all of the pixels below each vine segment. This 

step was performed at the pixel level, which permitted dealing with the irregular shapes of 

the vines. This process was very similar to the last step of the algorithm developed for olive 

characterization in (Torres-Sánchez et al. 2015). 

Figure 2. Explicative diagram of the automatic OBIA algorithms. Abbreviations used: DSM (digital surface 

model), SD (standard deviation) 

4.4. Validation 

4.4.1. Grapevine classification and gap detection 

Manual classification of the orthomosaics was done over 20 squares of 2 × 2 m located on a 

grid basis over the study fields (Fig. 3a and b), the points were marked on the field using an artificial 

target for locating them more easily on the orthomosaics. The squares were designed with the same 

orientation as the vine rows using ArcGis 10.0 (ESRI, Redlands, CA, USA) shapefiles. The manual 

editing tools of eCognition were used for the manual classification of vine and soil in the 20 squares. 

This classification was compared with the output of the automatic classification algorithm, and 

confusion matrices were constructed using the results of the comparison. Cohen’s Kappa index (Eq. 
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1) and overall accuracy (OA) (Eq. 2) were computed for the confusion matrix resulting from the 

comparison. 

The automatically generated maps with the classification of vines and gaps were overlaid with 

the orthomosaics to validate the gap detection section of the algorithm. The lengths of correctly 

classified gaps, non-detected gaps, and vines classified as gaps were measured using ArcGIS 10.0.  

4.4.2. Grapevine height  

In every field and on every date, the grapevine height was measured using a ruler (Fig. 3c) on 

both sides of the points located in the field for classification validation, resulting in 40 validation data 

in every field and on every date. The measured height of the vines was compared to the height 

detected by the OBIA algorithm in the validation points. The R2 and root mean square error (RMSE) 

of this comparison were calculated using JMP software (SAS, Cary, NC, USA).  

Figure 3. Experimental set for validating the vine height detection results: a) point grid in Field 9 on July; b) one 

of the vector squares used for classification validation (the yellow points indicate the positions of height 

measurements); c) measurement of the vine height.  
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5. RESULTS AND DISCUSSION 

5.1. Vine classification 

Vine classification based on height differences (Fig. 4c and d) provided by the DSM achieved 

high levels of accuracy, being 93.61% (Table 3) the lower OA value reached among all of the studied 

fields. In the six cases analyzed, the kappa index values were over 0.7, and they were very near to 0.9 

in Fields 9 and 24 on both studied dates (Table 3), which demonstrates a good classification accuracy 

taking into account that kappa values range from -1 to 1. The accuracy was higher in Fields 9 and 24 

because they had more vigorous and developed vine canopies. On the other hand, the vines in Field 

111 were smaller and less vigorous, which resulted in a poorer 3D reconstruction, and, consequently, 

in a lower performance of the DSM based OBIA algorithm. The low and irregular growth of vines in 

Field 111 led the property to uproot the entire parcel in the winter of 2015-2016. Therefore, the 

lower kappa values could be from the fact that the existence of very thin branches with few leaves 

made the 3D modelling of the crop more difficult. The contrast between the kappa values in Field 

111 and the high OA values reached in both dates is because the vine covered only a small 

proportion of the image; consequently, the high percent of soil in the image ensure a high OA value, 

even if the algorithm did not detect the vine accurately. 

Table 3. Kappa index values for the vine classification in the three fields on both study dates.  

Field Date Overall accuracy (%) kappa

9
July 95.54 0.91

September 95.41 0.89

24
July 95.19 0.87

September 95.98 0.85

111
July 93.61 0.78

September 96.07 0.73

Vine classification accuracy is important in itself because of its applicability to vine monitoring 

purposes. However, it is also important because it can be used as a beginning step for information 

extraction of the vine with the same sensor or using other sensors. When using thermal sensors to 

assess the vineyard water status, a good vine classification is required for extracting thermal data 

corresponding only to the vine canopy (Baluja et al. 2012). Baluja et al. tried to use NDVI thresholding 

techniques for pure canopy pixel extraction, but it led to problems with the inclusion of soil pixels or 

with large losses of information. Thresholding methods for vine classification can cause problems due 

to shadows and to inter-row cover crops. Determining an optimal threshold is a compromise 

between retaining non-vine NDVI values and losing vine NDVI values. It is very difficult to achieve an 

optimal balance and, consequently, thresholding on its own is not suitable for vine row classification 
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(Smit et al. 2010). Finally, Baluja et al. used a watershed algorithm available in GRASS GIS (Metz et al. 

2010) that improved the classification (data not shown numerically in their work) although they 

mention that it also caused soil inclusion in the vine classification. Because the vine classification 

approach presented in this work is based on 3D reconstruction rather than on vegetation index 

thresholding, less than 6.5% (data not shown) of the soil was classified as vine, and the green cover in 

the inter-row did not interfere in the vine classification. Consequently, it could be used to mask soil 

pixels in thermal imagery for the assessment of the vineyard water status. Another important aspect 

of the proposed methodology is that it does not need any user intervention, while other approaches 

need of manual touch-up for removing non-vine objects (Mathews 2014) or need manually 

delineated regions of interest to ensure their vigor information belongs only to the vine (Matese et 

al. 2015) and it was not influenced by the spectral information of the green cover (Fig. 1a and 4a) 

growing in the inter-row areas.  

Figure 4. Different results of the workflow over the same area of Field 9 on July: a) orthomosaic; b) digital 

surface model; c) vine classification output; d) gap detection and vine segments ready for its characterization.  

5.2. Vine gaps detection 

All of the gaps were detected in the three fields and on both dates, with only the exception of 

Field 9 in September, and even in this case, more than 95% of the gaps’ length was detected (Table 

4). False positive rates were very low in Fields 9, 24 and 111 in July, but on the second date for Field 
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111 the algorithm detected about 50% more gaps than actually existed. This result is in agreement 

with the lower kappa achieved in the vine classification in the same case, and it is also related to the 

less correct 3D reconstruction due to the bad condition of the crop. The results in Field 111 in July 

were better because the vine canopy in September was affected by the harvest machinery and, 

consequently, was in worse condition. In any case, the vineyard health was so bad even in July that 

the property uprooted the field a few months later.  

The lower accuracy in gap detection and vine classification in Field 111 in September contrasts 

with the low RMSE achieved in the height detection (Fig. 6). This is because the validation of height 

detection was done by measuring the height of the top area of the vines in the field, and the 3D 

reconstruction software was able to detect these singular points. However, in Field 111 in 

September, it had problems with the reconstruction of the lower parts of the vine due to the 

presence of a weak canopy with sparse leaves. Consequently, the algorithm was able to accurately 

detect the vine height but achieved worse results in vine classification and gap detection, which 

where the parts of the algorithm where the whole vine geometry should be correctly generated.   

Table 4. Results of the gap detection in vine rows.  Percentages were calculated over the total length of gaps in 

the field.  

Field Date
True 

positive (%)
False 

positive (%)
False 

negative (%)

9
July 100.00 1.12 0.00

Septe
mber

96.79 0 3.21

24
July 100.00 1.03 0.00

Septe
mber

100.00 5.98 0.00

111
July 100.00 0.00 0.00

Septe
mber

100.00 46.81 0.00

5.3. Vine height quantification 

The OBIA algorithm accurately extracted the plant height from the vineyard DSM, only one of 

the field measurements was omitted because the algorithm did not detect the vine in it. An R2 of 

0.89 was achieved in the correlation of the measured height with the detected height for the 

combination of all fields and dates (Fig. 5). The RMSE of this correlation was 0.18 m, very near to the 

one achieved in the detection of tree height in (Torres-Sánchez et al. 2015). When analyzing the data 

by field and date (Fig. 6), it can be seen that the RMSE was lower in all cases, with the exception of 

Field 24 in July, and in four cases, it was equal to or lower than 0.12 m. The low errors in height 

detection are similar to the one achieved in (Burgos et al. 2015), where, although there was not an 

exhaustive height detection validation, the difference between the average detected height and the 
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topping height measured in the field was 0.13 m. Burgos et al. used a flight plan with a crossing lines 

pattern, which implies needing more time for flying a vineyard, and, consequently, reducing the 

maximum area that could be analyzed due to the limited UAV autonomy. Another difference with 

the present work is that they needed to generate a digital terrain model to study the crop height 

while the use of OBIA in the present work allowed omitting this step in the analysis workflow.  

Figure 5. Graphical comparison of measured vs. detected vine height. Different colors in the points indicate the 

different fields. The results of July and September are shown together. 

Figure 6. Graphical comparison of measured vs. detected vine height divided by field and date. Different colors 

in the points indicate the different fields. 
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5.4. Volume mapping 

The workflow presented herein allows for growth monitoring of the vineyard during the entire 

growing cycle through the detection of the vineyard area and height, and the localization of gaps in 

the vine rows. The combination of accurate vine detection with good detection of vine height and its 

variability allows the calculation of the vine canopy volume (Fig. 7). All of these variables can be 

mapped in different moments of the year, which allows the identification of areas inside the vineyard 

that could have a problem and, consequently, need site-specific management (Andrew Hall et al. 

2010). This information can also be exported as table files (e.g., Excel or ASCII format) (Table 5) for its 

use in variable-rate sprayers, a technique that has allowed savings of up to 58% of the application 

volume (Llorens et al. 2010), which represents an important reduction in pollution and operation 

costs.   

Figure 7. Volume maps of the three fields on July. From left to right: Field 9, Field 24, and Field 111. Coordinates 

are in the WGS84, UTM zone 31N reference system. 

Table 5. A sample of the output data file for vine segments of field 9 in September. 

X Center Y Center Length 
(m)

Width 
(m)

Area 
(m²)

Vine max 
height (m)

Vine mean 
height (m)

Vine volume 
(m3)

290909.63 4615191.17 1.36 0.48 0.51 2.02 1.49 0.76

290909.85 4615192.23 2.06 1.41 1.93 2.13 1.33 2.56

… … … … … … … …

290910.55 4615194.39 2.05 1.21 1.32 2.22 1.53 2.02

290918.60 4615225.30 2.06 1.74 2.35 2.22 1.72 4.05

290919.09 4615227.23 2.14 1.65 2.15 2.18 1.54 3.31

290919.60 4615229.19 2.03 1.37 1.46 2.00 1.41 2.06

290920.12 4615231.14 2.19 1.63 2.13 2.00 1.40 2.99
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6. CONCLUSIONS 

Three commercial vineyards were modelled in 3D on two different dates using images 

acquired with a low-cost camera onboard a UAV. A robust and automatic OBIA algorithm was 

developed for the 3D characterization of the vine parcels, including vine classification, height 

estimation and gap detection. Vine classification was based on the height variation in the DSMs 

because green-cover growing in the inter-rows could have led to misclassification due to the 

similarity in the spectral values of the cover and the vine canopy. The algorithm accurately detected 

the vine area, height, and the existence of gaps in most cases.  

The combination of ultra-high-spatial resolution DSMs and the OBIA algorithm developed in 

this paper has been shown to be a valuable tool for the accurate characterization of the vines. The 

OBIA procedure computes multiple data that can be exported in image, vector and table format to 

be used as inputs in the design of variable rate treatments for precision viticulture. Furthermore, the 

classification of the vine can be used as a mask over thermal or multispectral imagery of the 

vineyards to isolate pixels corresponding to the vine canopy, which would allow for the extraction of 

more accurate information by avoiding the spectral mixing of the different soil uses.  
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El objetivo general de la presente Tesis Doctoral ha sido el desarrollo de metodologías 

automatizadas y robustas para la cartografía de malas hierbas en cultivos herbáceos en fase 

temprana y la monitorización tridimensional de cultivos leñosos, con el fin último de contribuir a la 

implementación de estrategias de técnicas de aplicación variable en el ámbito de la agricultura de 

precisión que permitan un uso sostenible de los productos fitosanitarios.  

Este objetivo global se ha desarrollado a través de los siguientes objetivos específicos: 

6. Estudiar la configuración y las especificaciones técnicas de un UAV y de los sensores 

embarcados  para su aplicación en la detección temprana de malas hierbas y contribuir a la 

generación de mapas para diseñar un programa de control dirigido únicamente a dichas 

emergencias.  

7. Evaluar los índices espectrales en el rango visible existentes en la literatura científica para su 

aplicación en la discriminación de suelo desnudo y vegetación (malas hierbas y cultivo) en 

imágenes tomadas con un UAV sobre cultivos de trigo  en fase temprana. 

8. Implementar en un entorno OBIA un método de cálculo automático de umbrales para la 

detección de vegetación (cultivo y malas hierbas) en imágenes procedentes de UAV tomadas 

en cultivos herbáceos (maíz, trigo y girasol) en fase temprana.  

9. Desarrollar una metodología OBIA automática y robusta para la discriminación de malas 

hierbas en cultivos herbáceos en fase temprana, así como evaluar la influencia sobre su 

funcionamiento de distintos parámetros relacionados con la programación de los vuelos y la 

adquisición de imágenes UAV. 

10. Desarrollar una metodología OBIA automática y robusta para la caracterización 

tridimensional de cultivos leñosos (olivar y viña) mediante imágenes y MDS generados a 

partir de imágenes procedentes de un UAV. 

De los trabajos desarrollados para alcanzar los objetivos específicos marcados en esta Tesis 

Doctoral se han podido obtener las siguientes conclusiones: 

1. La tecnología UAV es capaz de proporcionar imágenes con la resolución espacial y temporal 

necesarias para la detección de malas hierbas en fase temprana. La resolución espacial de las 

imágenes, el área cubierta por cada una y el tiempo de vuelo necesario para abarcar una 

parcela completa varían en función de las especificaciones del sensor, el porcentaje de 

solape (transversal y longitudinal) y la altura de vuelo. La resolución espacial óptima debe ser 

definida de acuerdo al objetivo planteado. Para discriminar plantas individuales de malas 

hierbas, sería recomendable un píxel menor de 4 cm, lo que con los sensores utilizados en 

esta Tesis correspondió a altitudes de vuelo por debajo de 100 m. Si el objetivo es la 

detección de rodales de malas hierbas, el UAV puede volar más alto y generar píxeles de 
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menor resolución. Además de la altitud de vuelo y el sensor utilizado, es necesario considerar 

el porcentaje de solape y la duración de las baterías del UAV ya que el número de imágenes 

necesarias para cubrir una parcela completa a baja altura y con elevados porcentajes de 

solape requiere más tiempo y ello puede ocasionar problemas relacionados con la 

autonomía del UAV en el diseño de rutas de vuelo. 

2. Las diferencias espectrales en imágenes tomadas con un UAV entre malas hierbas, cultivo y 

suelo desnudo fueron significativas para los índices NGRDI y ExG, sobre todo en vuelos a 30 

m de altitud. Sin embargo, a mayor altitud las malas hierbas y plantas de cultivo en fases 

tempranas de crecimiento presentan valores espectrales similares. La estrategia que podría 

mejorar su clasificación sería mediante el uso de técnicas OBIA que añadan al análisis de las 

imágenes información contextual a  la espectral.  

3. Los índices de vegetación calculados a partir de una serie multitemporal de imágenes 

tomadas con un sensor en rango visible (RGB) de bajo coste a bordo de un UAV permiten 

discriminar vegetación (cultivo y malas hierbas) en campos de trigo en fase temprana. Entre 

los índices evaluados, los resultados más satisfactorios fueron obtenidos con ExG y VEG, 

siendo ExG el más preciso para aplicaciones prácticas en agricultura debido a su mayor 

simplicidad y su mejor ajuste en vuelos realizados a 30 y 60 m de altitud  en todas las fechas 

de toma de imágenes evaluadas. Por tanto, la altitud y la fecha de vuelo deben ser evaluados 

y fijados según los objetivos de la toma de imágenes.  

4. Es posible la umbralización automática de índices espectrales para la clasificación de 

vegetación (cultivo y malas hierbas) mediante el desarrollo de un algoritmo automático y 

eficiente que adapta el método de Otsu a un entorno OBIA. Se ha demostrado la habilidad 

del algoritmo para seleccionar un umbral de un histograma de niveles de gris con 

independencia de que este sea unimodal o bimodal. Además, el uso de este procedimiento 

en un entorno OBIA aumenta su transferibilidad al eliminar la necesidad de calcular los 

umbrales óptimos para cada área de manera manual. 

5. Se ha desarrollado un procedimiento OBIA robusto y automático para la discriminación de 

malas hierbas en imágenes tomadas por UAV sobre cultivos herbáceos en fase temprana. Las 

malas hierbas son identificadas en base a su posición relativa respecto a las líneas de cultivo. 

El algoritmo diseñado calcula parámetros estadísticos derivados del análisis de la imagen y 

puede ser exportado en diversos formatos, lo que permite su implementación en programas 

de SSWM para el diseño de mapas de tratamientos herbicidas. 

6. En campos de girasol y estudiando un conjunto de imágenes multitemporales, la mayor 

precisión en la detección de malas hierbas fue obtenida mediante imágenes capturadas a 40 

m de altitud 50 días después de la siembra, cuando el cultivo y las malas hierbas tienen 5-6 
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hojas verdaderas (código 15-15 en la escala BBCH). En esta fecha, se obtuvo una precisión del 

91% con un sensor multiespectral (RGB+NIR). En vuelos a 40 m de altitud, las imágenes 

capturadas en la fecha anterior mostraron una precisión ligeramente mayor que las tomadas 

con posterioridad. Sin embargo, a altitudes superiores a los 60m, las imágenes generadas con 

el sensor en rango visible (RGB) dieron mejores resultados en la tercera fecha debido al 

mayor tamaño de las malas hierbas. Con el fin de ofrecer una aplicación práctica al usuario 

interesado, se realizan una serie de recomendaciones para que antes de iniciar trabajos de 

detección de malas hierbas con UAV se consideren varios factores: 1) características y precio 

del sensor; 2) área cubierta en cada vuelo; 3) grado de precisión necesario; 4) objetivo 

agronómico. 

7. La combinación de imágenes UAV de muy alta resolución espacial con el procedimiento OBIA 

desarrollado permite la generación de mapas de malas hierbas en cultivos herbáceos en fase 

temprana. Estos mapas de emergencias permiten diseñar mapas de tratamientos localizados 

de herbicidas que se pueden adaptar a cada cultivo y a diferentes tamaños de distancia entre 

los pulverizadores de los equipos de tratamiento, lo cual no había sido posible previamente. 

El procedimiento OBIA permite calcular información del cultivo exportable en los formatos 

de tabla, vectorial o ráster. Esta tecnología ha demostrado la posibilidad de ahorros medios 

herbicidas cercanos 70%, pudiendo ayudar en la implementación de las legislaciones europea 

y española para el uso sostenible de fitosanitarios, una de cuyas finalidades consiste en 

promover la reducción de las aplicaciones de herbicidas.  

8. Se ha demostrado la capacidad de la tecnología UAV para generar eficientemente datos 

tridimensionales de centenares de árboles en cultivos leñosos. En la investigación realizada 

en esta Tesis Doctoral se eligió el cultivo del olivar por su relevancia en la Cuenca 

Mediterránea y se abordó en parcelas gestionadas tanto de manera intensiva (en seto) como 

tradicional. Mediante el innovador algoritmo OBIA desarrollado, se ha podido llegar a un 97% 

de precisión en la cuantificación del área de copa proyectada y a mínimas desviaciones en las 

estimaciones de la altura y el volumen, ofreciendo una valiosa alternativa a las mediciones en 

campo. La información georreferencia generada por el procedimiento OBIA permite crear 

mapas que reflejan la variabilidad del cultivo, pudiendo ser utilizados para el diseño de 

tratamientos fitosanitarios con tecnología variable que ayuden a reducir la cantidad de 

producto aplicado a su parte aérea y en consonancia con las legislaciones europea y española 

vigentes. El procedimiento OBIA permite calcular información del cultivo exportable en los 

formatos de tabla, vectorial o ráster. Además, permite estudiar las relaciones entre el 

crecimiento de los árboles y otros factores como propiedades del suelo, la topografía del 
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terreno, infestaciones de malas hierbas o árboles afectados por algún insecto-plaga, hongo u 

otro tipo de estrés.   

9. Se ha desarrollado un novedoso y robusto algoritmo de OBIA para la caracterización y 

monitorización 3D de viñedos. La clasificación de la viña se basó en la variación de alturas en 

los MDS, lo que permitió evitar los problemas que la vegetación creciendo entre las hileras 

de viña hubiera provocado en caso de utilizar una aproximación basada en píxeles e índices 

de vegetación. El procedimiento OBIA es totalmente automático, auto-adaptativo a 

diferentes situaciones en el campo y permite calcular información del cultivo exportable en 

los formatos de tabla, vectorial o ráster. Los resultados demuestran una gran precisión en la 

clasificación de las cepas, en torno al 90-95%, así como pequeños errores en la estimación de 

la altura de la viña (RMSE de 0,18 m de media). Además, el algoritmo puede calcular la 

posición, área proyectada y volumen de cada cepa del viñedo, lo que aumenta el potencial 

de esta tecnología para desarrollar estrategias relacionadas con la tecnología basada en 

aplicación variable de fitosanitarios dirigidos a la parte aérea del cultivo. 




